Solve for x
x = \frac{63}{4} = 15\frac{3}{4} = 15.75
Graph
Share
Copied to clipboard
18-x=\frac{27}{12}
Divide both sides by 12.
18-x=\frac{9}{4}
Reduce the fraction \frac{27}{12} to lowest terms by extracting and canceling out 3.
-x=\frac{9}{4}-18
Subtract 18 from both sides.
-x=\frac{9}{4}-\frac{72}{4}
Convert 18 to fraction \frac{72}{4}.
-x=\frac{9-72}{4}
Since \frac{9}{4} and \frac{72}{4} have the same denominator, subtract them by subtracting their numerators.
-x=-\frac{63}{4}
Subtract 72 from 9 to get -63.
x=\frac{63}{4}
Multiply both sides by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}