Solve for x
x = -\frac{209}{72} = -2\frac{65}{72} \approx -2.902777778
Graph
Share
Copied to clipboard
432\left(\frac{3x}{4}-\frac{7}{2}\right)-216\left(\frac{5}{9}+\frac{3x}{4}\right)=18\times 3x+648\left(\frac{5x}{6}-\frac{7}{12}\right)
Multiply both sides of the equation by 36, the least common multiple of 4,2,9,6,12.
432\left(\frac{3x}{4}-\frac{7\times 2}{4}\right)-216\left(\frac{5}{9}+\frac{3x}{4}\right)=18\times 3x+648\left(\frac{5x}{6}-\frac{7}{12}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 2 is 4. Multiply \frac{7}{2} times \frac{2}{2}.
432\times \frac{3x-7\times 2}{4}-216\left(\frac{5}{9}+\frac{3x}{4}\right)=18\times 3x+648\left(\frac{5x}{6}-\frac{7}{12}\right)
Since \frac{3x}{4} and \frac{7\times 2}{4} have the same denominator, subtract them by subtracting their numerators.
432\times \frac{3x-14}{4}-216\left(\frac{5}{9}+\frac{3x}{4}\right)=18\times 3x+648\left(\frac{5x}{6}-\frac{7}{12}\right)
Do the multiplications in 3x-7\times 2.
108\left(3x-14\right)-216\left(\frac{5}{9}+\frac{3x}{4}\right)=18\times 3x+648\left(\frac{5x}{6}-\frac{7}{12}\right)
Cancel out 4, the greatest common factor in 432 and 4.
324x-1512-216\left(\frac{5}{9}+\frac{3x}{4}\right)=18\times 3x+648\left(\frac{5x}{6}-\frac{7}{12}\right)
Use the distributive property to multiply 108 by 3x-14.
324x-1512-216\left(\frac{5\times 4}{36}+\frac{9\times 3x}{36}\right)=18\times 3x+648\left(\frac{5x}{6}-\frac{7}{12}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 9 and 4 is 36. Multiply \frac{5}{9} times \frac{4}{4}. Multiply \frac{3x}{4} times \frac{9}{9}.
324x-1512-216\times \frac{5\times 4+9\times 3x}{36}=18\times 3x+648\left(\frac{5x}{6}-\frac{7}{12}\right)
Since \frac{5\times 4}{36} and \frac{9\times 3x}{36} have the same denominator, add them by adding their numerators.
324x-1512-216\times \frac{20+27x}{36}=18\times 3x+648\left(\frac{5x}{6}-\frac{7}{12}\right)
Do the multiplications in 5\times 4+9\times 3x.
324x-1512-6\left(20+27x\right)=18\times 3x+648\left(\frac{5x}{6}-\frac{7}{12}\right)
Cancel out 36, the greatest common factor in 216 and 36.
324x-1512-120-162x=18\times 3x+648\left(\frac{5x}{6}-\frac{7}{12}\right)
Use the distributive property to multiply -6 by 20+27x.
324x-1632-162x=18\times 3x+648\left(\frac{5x}{6}-\frac{7}{12}\right)
Subtract 120 from -1512 to get -1632.
162x-1632=18\times 3x+648\left(\frac{5x}{6}-\frac{7}{12}\right)
Combine 324x and -162x to get 162x.
162x-1632=54x+648\left(\frac{5x}{6}-\frac{7}{12}\right)
Multiply 18 and 3 to get 54.
162x-1632=54x+648\left(\frac{2\times 5x}{12}-\frac{7}{12}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and 12 is 12. Multiply \frac{5x}{6} times \frac{2}{2}.
162x-1632=54x+648\times \frac{2\times 5x-7}{12}
Since \frac{2\times 5x}{12} and \frac{7}{12} have the same denominator, subtract them by subtracting their numerators.
162x-1632=54x+648\times \frac{10x-7}{12}
Do the multiplications in 2\times 5x-7.
162x-1632=54x+54\left(10x-7\right)
Cancel out 12, the greatest common factor in 648 and 12.
162x-1632=54x+540x-378
Use the distributive property to multiply 54 by 10x-7.
162x-1632=594x-378
Combine 54x and 540x to get 594x.
162x-1632-594x=-378
Subtract 594x from both sides.
-432x-1632=-378
Combine 162x and -594x to get -432x.
-432x=-378+1632
Add 1632 to both sides.
-432x=1254
Add -378 and 1632 to get 1254.
x=\frac{1254}{-432}
Divide both sides by -432.
x=-\frac{209}{72}
Reduce the fraction \frac{1254}{-432} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}