Verify
true
Share
Copied to clipboard
\frac{12}{\frac{60}{5}+\frac{12}{5}}+\frac{1}{6}=1
Convert 12 to fraction \frac{60}{5}.
\frac{12}{\frac{60+12}{5}}+\frac{1}{6}=1
Since \frac{60}{5} and \frac{12}{5} have the same denominator, add them by adding their numerators.
\frac{12}{\frac{72}{5}}+\frac{1}{6}=1
Add 60 and 12 to get 72.
12\times \frac{5}{72}+\frac{1}{6}=1
Divide 12 by \frac{72}{5} by multiplying 12 by the reciprocal of \frac{72}{5}.
\frac{12\times 5}{72}+\frac{1}{6}=1
Express 12\times \frac{5}{72} as a single fraction.
\frac{60}{72}+\frac{1}{6}=1
Multiply 12 and 5 to get 60.
\frac{5}{6}+\frac{1}{6}=1
Reduce the fraction \frac{60}{72} to lowest terms by extracting and canceling out 12.
\frac{5+1}{6}=1
Since \frac{5}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
\frac{6}{6}=1
Add 5 and 1 to get 6.
1=1
Divide 6 by 6 to get 1.
\text{true}
Compare 1 and 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}