Solve for v_1
v_{1}=\frac{11v_{2}-c}{12}
c\neq 0
Solve for c
c=11v_{2}-12v_{1}
v_{1}\neq \frac{11v_{2}}{12}
Share
Copied to clipboard
12\left(1+\frac{v_{1}}{c}\right)c=11\left(1+\frac{v_{2}}{c}\right)c
Multiply both sides of the equation by c.
12\left(\frac{c}{c}+\frac{v_{1}}{c}\right)c=11\left(1+\frac{v_{2}}{c}\right)c
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{c}{c}.
12\times \frac{c+v_{1}}{c}c=11\left(1+\frac{v_{2}}{c}\right)c
Since \frac{c}{c} and \frac{v_{1}}{c} have the same denominator, add them by adding their numerators.
\frac{12\left(c+v_{1}\right)}{c}c=11\left(1+\frac{v_{2}}{c}\right)c
Express 12\times \frac{c+v_{1}}{c} as a single fraction.
\frac{12\left(c+v_{1}\right)c}{c}=11\left(1+\frac{v_{2}}{c}\right)c
Express \frac{12\left(c+v_{1}\right)}{c}c as a single fraction.
12\left(v_{1}+c\right)=11\left(1+\frac{v_{2}}{c}\right)c
Cancel out c in both numerator and denominator.
12v_{1}+12c=11\left(1+\frac{v_{2}}{c}\right)c
Use the distributive property to multiply 12 by v_{1}+c.
12v_{1}+12c=11\left(\frac{c}{c}+\frac{v_{2}}{c}\right)c
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{c}{c}.
12v_{1}+12c=11\times \frac{c+v_{2}}{c}c
Since \frac{c}{c} and \frac{v_{2}}{c} have the same denominator, add them by adding their numerators.
12v_{1}+12c=\frac{11\left(c+v_{2}\right)}{c}c
Express 11\times \frac{c+v_{2}}{c} as a single fraction.
12v_{1}+12c=\frac{11\left(c+v_{2}\right)c}{c}
Express \frac{11\left(c+v_{2}\right)}{c}c as a single fraction.
12v_{1}+12c=11\left(v_{2}+c\right)
Cancel out c in both numerator and denominator.
12v_{1}+12c=11v_{2}+11c
Use the distributive property to multiply 11 by v_{2}+c.
12v_{1}=11v_{2}+11c-12c
Subtract 12c from both sides.
12v_{1}=11v_{2}-c
Combine 11c and -12c to get -c.
\frac{12v_{1}}{12}=\frac{11v_{2}-c}{12}
Divide both sides by 12.
v_{1}=\frac{11v_{2}-c}{12}
Dividing by 12 undoes the multiplication by 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}