Solve for y
y>-\frac{32}{3}
Graph
Share
Copied to clipboard
12\left(-\frac{8}{9}\right)<y
Multiply both sides by -\frac{8}{9}, the reciprocal of -\frac{9}{8}. Since -\frac{9}{8} is negative, the inequality direction is changed.
\frac{12\left(-8\right)}{9}<y
Express 12\left(-\frac{8}{9}\right) as a single fraction.
\frac{-96}{9}<y
Multiply 12 and -8 to get -96.
-\frac{32}{3}<y
Reduce the fraction \frac{-96}{9} to lowest terms by extracting and canceling out 3.
y>-\frac{32}{3}
Swap sides so that all variable terms are on the left hand side. This changes the sign direction.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}