Solve for V_0
V_{0}=\frac{gt_{2}}{2}+\frac{12}{t_{2}}
t_{2}\neq 0
Solve for g
g=\frac{2\left(V_{0}t_{2}-12\right)}{t_{2}^{2}}
t_{2}\neq 0
Share
Copied to clipboard
V_{0}t_{2}-\frac{1}{2}gt_{2}^{2}=12
Swap sides so that all variable terms are on the left hand side.
V_{0}t_{2}=12+\frac{1}{2}gt_{2}^{2}
Add \frac{1}{2}gt_{2}^{2} to both sides.
t_{2}V_{0}=\frac{gt_{2}^{2}}{2}+12
The equation is in standard form.
\frac{t_{2}V_{0}}{t_{2}}=\frac{\frac{gt_{2}^{2}}{2}+12}{t_{2}}
Divide both sides by t_{2}.
V_{0}=\frac{\frac{gt_{2}^{2}}{2}+12}{t_{2}}
Dividing by t_{2} undoes the multiplication by t_{2}.
V_{0}=\frac{gt_{2}}{2}+\frac{12}{t_{2}}
Divide 12+\frac{gt_{2}^{2}}{2} by t_{2}.
V_{0}t_{2}-\frac{1}{2}gt_{2}^{2}=12
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{2}gt_{2}^{2}=12-V_{0}t_{2}
Subtract V_{0}t_{2} from both sides.
\left(-\frac{t_{2}^{2}}{2}\right)g=12-V_{0}t_{2}
The equation is in standard form.
\frac{\left(-\frac{t_{2}^{2}}{2}\right)g}{-\frac{t_{2}^{2}}{2}}=\frac{12-V_{0}t_{2}}{-\frac{t_{2}^{2}}{2}}
Divide both sides by -\frac{1}{2}t_{2}^{2}.
g=\frac{12-V_{0}t_{2}}{-\frac{t_{2}^{2}}{2}}
Dividing by -\frac{1}{2}t_{2}^{2} undoes the multiplication by -\frac{1}{2}t_{2}^{2}.
g=-\frac{2\left(12-V_{0}t_{2}\right)}{t_{2}^{2}}
Divide 12-t_{2}V_{0} by -\frac{1}{2}t_{2}^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}