Skip to main content
Solve for V_0
Tick mark Image
Solve for g
Tick mark Image

Similar Problems from Web Search

Share

V_{0}t_{2}-\frac{1}{2}gt_{2}^{2}=12
Swap sides so that all variable terms are on the left hand side.
V_{0}t_{2}=12+\frac{1}{2}gt_{2}^{2}
Add \frac{1}{2}gt_{2}^{2} to both sides.
t_{2}V_{0}=\frac{gt_{2}^{2}}{2}+12
The equation is in standard form.
\frac{t_{2}V_{0}}{t_{2}}=\frac{\frac{gt_{2}^{2}}{2}+12}{t_{2}}
Divide both sides by t_{2}.
V_{0}=\frac{\frac{gt_{2}^{2}}{2}+12}{t_{2}}
Dividing by t_{2} undoes the multiplication by t_{2}.
V_{0}=\frac{gt_{2}}{2}+\frac{12}{t_{2}}
Divide 12+\frac{gt_{2}^{2}}{2} by t_{2}.
V_{0}t_{2}-\frac{1}{2}gt_{2}^{2}=12
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{2}gt_{2}^{2}=12-V_{0}t_{2}
Subtract V_{0}t_{2} from both sides.
\left(-\frac{t_{2}^{2}}{2}\right)g=12-V_{0}t_{2}
The equation is in standard form.
\frac{\left(-\frac{t_{2}^{2}}{2}\right)g}{-\frac{t_{2}^{2}}{2}}=\frac{12-V_{0}t_{2}}{-\frac{t_{2}^{2}}{2}}
Divide both sides by -\frac{1}{2}t_{2}^{2}.
g=\frac{12-V_{0}t_{2}}{-\frac{t_{2}^{2}}{2}}
Dividing by -\frac{1}{2}t_{2}^{2} undoes the multiplication by -\frac{1}{2}t_{2}^{2}.
g=-\frac{2\left(12-V_{0}t_{2}\right)}{t_{2}^{2}}
Divide 12-t_{2}V_{0} by -\frac{1}{2}t_{2}^{2}.