Solve for x
x=12\sqrt{3}-5\approx 15.784609691
Graph
Share
Copied to clipboard
12=\frac{\left(x+5\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{x+5}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
12=\frac{\left(x+5\right)\sqrt{3}}{3}
The square of \sqrt{3} is 3.
12=\frac{x\sqrt{3}+5\sqrt{3}}{3}
Use the distributive property to multiply x+5 by \sqrt{3}.
\frac{x\sqrt{3}+5\sqrt{3}}{3}=12
Swap sides so that all variable terms are on the left hand side.
x\sqrt{3}+5\sqrt{3}=12\times 3
Multiply both sides by 3.
x\sqrt{3}+5\sqrt{3}=36
Multiply 12 and 3 to get 36.
x\sqrt{3}=36-5\sqrt{3}
Subtract 5\sqrt{3} from both sides.
\sqrt{3}x=36-5\sqrt{3}
The equation is in standard form.
\frac{\sqrt{3}x}{\sqrt{3}}=\frac{36-5\sqrt{3}}{\sqrt{3}}
Divide both sides by \sqrt{3}.
x=\frac{36-5\sqrt{3}}{\sqrt{3}}
Dividing by \sqrt{3} undoes the multiplication by \sqrt{3}.
x=12\sqrt{3}-5
Divide 36-5\sqrt{3} by \sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}