Solve for b
b=6
b=8
Quiz
Quadratic Equation
5 problems similar to:
12 = \frac { ( 14 - b ) \cdot \frac { b } { 2 } } { 2 }
Share
Copied to clipboard
12\times 2=\left(14-b\right)\times \frac{b}{2}
Multiply both sides by 2.
24\times 2=\left(14-b\right)b
Multiply both sides of the equation by 2.
48=\left(14-b\right)b
Multiply 24 and 2 to get 48.
48=14b-b^{2}
Use the distributive property to multiply 14-b by b.
14b-b^{2}=48
Swap sides so that all variable terms are on the left hand side.
14b-b^{2}-48=0
Subtract 48 from both sides.
-b^{2}+14b-48=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-14±\sqrt{14^{2}-4\left(-1\right)\left(-48\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 14 for b, and -48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-14±\sqrt{196-4\left(-1\right)\left(-48\right)}}{2\left(-1\right)}
Square 14.
b=\frac{-14±\sqrt{196+4\left(-48\right)}}{2\left(-1\right)}
Multiply -4 times -1.
b=\frac{-14±\sqrt{196-192}}{2\left(-1\right)}
Multiply 4 times -48.
b=\frac{-14±\sqrt{4}}{2\left(-1\right)}
Add 196 to -192.
b=\frac{-14±2}{2\left(-1\right)}
Take the square root of 4.
b=\frac{-14±2}{-2}
Multiply 2 times -1.
b=-\frac{12}{-2}
Now solve the equation b=\frac{-14±2}{-2} when ± is plus. Add -14 to 2.
b=6
Divide -12 by -2.
b=-\frac{16}{-2}
Now solve the equation b=\frac{-14±2}{-2} when ± is minus. Subtract 2 from -14.
b=8
Divide -16 by -2.
b=6 b=8
The equation is now solved.
12\times 2=\left(14-b\right)\times \frac{b}{2}
Multiply both sides by 2.
24\times 2=\left(14-b\right)b
Multiply both sides of the equation by 2.
48=\left(14-b\right)b
Multiply 24 and 2 to get 48.
48=14b-b^{2}
Use the distributive property to multiply 14-b by b.
14b-b^{2}=48
Swap sides so that all variable terms are on the left hand side.
-b^{2}+14b=48
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-b^{2}+14b}{-1}=\frac{48}{-1}
Divide both sides by -1.
b^{2}+\frac{14}{-1}b=\frac{48}{-1}
Dividing by -1 undoes the multiplication by -1.
b^{2}-14b=\frac{48}{-1}
Divide 14 by -1.
b^{2}-14b=-48
Divide 48 by -1.
b^{2}-14b+\left(-7\right)^{2}=-48+\left(-7\right)^{2}
Divide -14, the coefficient of the x term, by 2 to get -7. Then add the square of -7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
b^{2}-14b+49=-48+49
Square -7.
b^{2}-14b+49=1
Add -48 to 49.
\left(b-7\right)^{2}=1
Factor b^{2}-14b+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b-7\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
b-7=1 b-7=-1
Simplify.
b=8 b=6
Add 7 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}