Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

m^{2}+13m+12
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=13 ab=1\times 12=12
Factor the expression by grouping. First, the expression needs to be rewritten as m^{2}+am+bm+12. To find a and b, set up a system to be solved.
1,12 2,6 3,4
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 12.
1+12=13 2+6=8 3+4=7
Calculate the sum for each pair.
a=1 b=12
The solution is the pair that gives sum 13.
\left(m^{2}+m\right)+\left(12m+12\right)
Rewrite m^{2}+13m+12 as \left(m^{2}+m\right)+\left(12m+12\right).
m\left(m+1\right)+12\left(m+1\right)
Factor out m in the first and 12 in the second group.
\left(m+1\right)\left(m+12\right)
Factor out common term m+1 by using distributive property.
m^{2}+13m+12=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
m=\frac{-13±\sqrt{13^{2}-4\times 12}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-13±\sqrt{169-4\times 12}}{2}
Square 13.
m=\frac{-13±\sqrt{169-48}}{2}
Multiply -4 times 12.
m=\frac{-13±\sqrt{121}}{2}
Add 169 to -48.
m=\frac{-13±11}{2}
Take the square root of 121.
m=-\frac{2}{2}
Now solve the equation m=\frac{-13±11}{2} when ± is plus. Add -13 to 11.
m=-1
Divide -2 by 2.
m=-\frac{24}{2}
Now solve the equation m=\frac{-13±11}{2} when ± is minus. Subtract 11 from -13.
m=-12
Divide -24 by 2.
m^{2}+13m+12=\left(m-\left(-1\right)\right)\left(m-\left(-12\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -1 for x_{1} and -12 for x_{2}.
m^{2}+13m+12=\left(m+1\right)\left(m+12\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.