Solve for w
w\geq 42
Share
Copied to clipboard
12+10w\geq 8w+96
Use the distributive property to multiply 8 by w+12.
12+10w-8w\geq 96
Subtract 8w from both sides.
12+2w\geq 96
Combine 10w and -8w to get 2w.
2w\geq 96-12
Subtract 12 from both sides.
2w\geq 84
Subtract 12 from 96 to get 84.
w\geq \frac{84}{2}
Divide both sides by 2. Since 2 is positive, the inequality direction remains the same.
w\geq 42
Divide 84 by 2 to get 42.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}