Solve for x
x=\frac{\sqrt{2294425328025626}}{5}-9580032\approx 0.000000054
x=-\frac{\sqrt{2294425328025626}}{5}-9580032\approx -19160064.000000052
Graph
Share
Copied to clipboard
479001600x+25x^{2}=26
The factorial of 12 is 479001600.
479001600x+25x^{2}-26=0
Subtract 26 from both sides.
25x^{2}+479001600x-26=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-479001600±\sqrt{479001600^{2}-4\times 25\left(-26\right)}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, 479001600 for b, and -26 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-479001600±\sqrt{229442532802560000-4\times 25\left(-26\right)}}{2\times 25}
Square 479001600.
x=\frac{-479001600±\sqrt{229442532802560000-100\left(-26\right)}}{2\times 25}
Multiply -4 times 25.
x=\frac{-479001600±\sqrt{229442532802560000+2600}}{2\times 25}
Multiply -100 times -26.
x=\frac{-479001600±\sqrt{229442532802562600}}{2\times 25}
Add 229442532802560000 to 2600.
x=\frac{-479001600±10\sqrt{2294425328025626}}{2\times 25}
Take the square root of 229442532802562600.
x=\frac{-479001600±10\sqrt{2294425328025626}}{50}
Multiply 2 times 25.
x=\frac{10\sqrt{2294425328025626}-479001600}{50}
Now solve the equation x=\frac{-479001600±10\sqrt{2294425328025626}}{50} when ± is plus. Add -479001600 to 10\sqrt{2294425328025626}.
x=\frac{\sqrt{2294425328025626}}{5}-9580032
Divide -479001600+10\sqrt{2294425328025626} by 50.
x=\frac{-10\sqrt{2294425328025626}-479001600}{50}
Now solve the equation x=\frac{-479001600±10\sqrt{2294425328025626}}{50} when ± is minus. Subtract 10\sqrt{2294425328025626} from -479001600.
x=-\frac{\sqrt{2294425328025626}}{5}-9580032
Divide -479001600-10\sqrt{2294425328025626} by 50.
x=\frac{\sqrt{2294425328025626}}{5}-9580032 x=-\frac{\sqrt{2294425328025626}}{5}-9580032
The equation is now solved.
479001600x+25x^{2}=26
The factorial of 12 is 479001600.
25x^{2}+479001600x=26
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{25x^{2}+479001600x}{25}=\frac{26}{25}
Divide both sides by 25.
x^{2}+\frac{479001600}{25}x=\frac{26}{25}
Dividing by 25 undoes the multiplication by 25.
x^{2}+19160064x=\frac{26}{25}
Divide 479001600 by 25.
x^{2}+19160064x+9580032^{2}=\frac{26}{25}+9580032^{2}
Divide 19160064, the coefficient of the x term, by 2 to get 9580032. Then add the square of 9580032 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+19160064x+91777013121024=\frac{26}{25}+91777013121024
Square 9580032.
x^{2}+19160064x+91777013121024=\frac{2294425328025626}{25}
Add \frac{26}{25} to 91777013121024.
\left(x+9580032\right)^{2}=\frac{2294425328025626}{25}
Factor x^{2}+19160064x+91777013121024. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+9580032\right)^{2}}=\sqrt{\frac{2294425328025626}{25}}
Take the square root of both sides of the equation.
x+9580032=\frac{\sqrt{2294425328025626}}{5} x+9580032=-\frac{\sqrt{2294425328025626}}{5}
Simplify.
x=\frac{\sqrt{2294425328025626}}{5}-9580032 x=-\frac{\sqrt{2294425328025626}}{5}-9580032
Subtract 9580032 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}