Solve for T
T=-\frac{2157875683420595T_{0}}{119741840826531508}+\frac{168925297494724781353}{299354602066328770}
Solve for T_0
T_{0}=-\frac{119741840826531508T}{2157875683420595}+\frac{337850594989449562706}{10789378417102975}
Share
Copied to clipboard
119 \cdot {(90.16 \cdot 0.9063077870366499 + T \cdot 0.42261826174069944)} + T 0.9063077870366499 = 90160 \cdot 0.42261826174069944
Evaluate trigonometric functions in the problem
119\left(81.712710079224354984+T\times 0.42261826174069944\right)+T_{0}\times 0.9063077870366499=90160\times 0.42261826174069944
Multiply 90.16 and 0.9063077870366499 to get 81.712710079224354984.
9723.812499427698243096+119T\times 0.42261826174069944+T_{0}\times 0.9063077870366499=90160\times 0.42261826174069944
Use the distributive property to multiply 119 by 81.712710079224354984+T\times 0.42261826174069944.
9723.812499427698243096+50.29157314714323336T+T_{0}\times 0.9063077870366499=90160\times 0.42261826174069944
Multiply 119 and 0.42261826174069944 to get 50.29157314714323336.
9723.812499427698243096+50.29157314714323336T+T_{0}\times 0.9063077870366499=38103.2624785414615104
Multiply 90160 and 0.42261826174069944 to get 38103.2624785414615104.
50.29157314714323336T+T_{0}\times 0.9063077870366499=38103.2624785414615104-9723.812499427698243096
Subtract 9723.812499427698243096 from both sides.
50.29157314714323336T+T_{0}\times 0.9063077870366499=28379.449979113763267304
Subtract 9723.812499427698243096 from 38103.2624785414615104 to get 28379.449979113763267304.
50.29157314714323336T=28379.449979113763267304-T_{0}\times 0.9063077870366499
Subtract T_{0}\times 0.9063077870366499 from both sides.
50.29157314714323336T=28379.449979113763267304-0.9063077870366499T_{0}
Multiply -1 and 0.9063077870366499 to get -0.9063077870366499.
50.29157314714323336T=-\frac{9063077870366499T_{0}}{10000000000000000}+28379.449979113763267304
The equation is in standard form.
\frac{50.29157314714323336T}{50.29157314714323336}=\frac{-\frac{9063077870366499T_{0}}{10000000000000000}+28379.449979113763267304}{50.29157314714323336}
Divide both sides of the equation by 50.29157314714323336, which is the same as multiplying both sides by the reciprocal of the fraction.
T=\frac{-\frac{9063077870366499T_{0}}{10000000000000000}+28379.449979113763267304}{50.29157314714323336}
Dividing by 50.29157314714323336 undoes the multiplication by 50.29157314714323336.
T=-\frac{2157875683420595T_{0}}{119741840826531508}+\frac{168925297494724781353}{299354602066328770}
Divide 28379.449979113763267304-\frac{9063077870366499T_{0}}{10000000000000000} by 50.29157314714323336 by multiplying 28379.449979113763267304-\frac{9063077870366499T_{0}}{10000000000000000} by the reciprocal of 50.29157314714323336.
119 \cdot {(90.16 \cdot 0.9063077870366499 + T \cdot 0.42261826174069944)} + T 0.9063077870366499 = 90160 \cdot 0.42261826174069944
Evaluate trigonometric functions in the problem
119\left(81.712710079224354984+T\times 0.42261826174069944\right)+T_{0}\times 0.9063077870366499=90160\times 0.42261826174069944
Multiply 90.16 and 0.9063077870366499 to get 81.712710079224354984.
9723.812499427698243096+119T\times 0.42261826174069944+T_{0}\times 0.9063077870366499=90160\times 0.42261826174069944
Use the distributive property to multiply 119 by 81.712710079224354984+T\times 0.42261826174069944.
9723.812499427698243096+50.29157314714323336T+T_{0}\times 0.9063077870366499=90160\times 0.42261826174069944
Multiply 119 and 0.42261826174069944 to get 50.29157314714323336.
9723.812499427698243096+50.29157314714323336T+T_{0}\times 0.9063077870366499=38103.2624785414615104
Multiply 90160 and 0.42261826174069944 to get 38103.2624785414615104.
50.29157314714323336T+T_{0}\times 0.9063077870366499=38103.2624785414615104-9723.812499427698243096
Subtract 9723.812499427698243096 from both sides.
50.29157314714323336T+T_{0}\times 0.9063077870366499=28379.449979113763267304
Subtract 9723.812499427698243096 from 38103.2624785414615104 to get 28379.449979113763267304.
T_{0}\times 0.9063077870366499=28379.449979113763267304-50.29157314714323336T
Subtract 50.29157314714323336T from both sides.
0.9063077870366499T_{0}=-\frac{628644664339290417T}{12500000000000000}+28379.449979113763267304
The equation is in standard form.
\frac{0.9063077870366499T_{0}}{0.9063077870366499}=\frac{-\frac{628644664339290417T}{12500000000000000}+28379.449979113763267304}{0.9063077870366499}
Divide both sides of the equation by 0.9063077870366499, which is the same as multiplying both sides by the reciprocal of the fraction.
T_{0}=\frac{-\frac{628644664339290417T}{12500000000000000}+28379.449979113763267304}{0.9063077870366499}
Dividing by 0.9063077870366499 undoes the multiplication by 0.9063077870366499.
T_{0}=-\frac{119741840826531508T}{2157875683420595}+\frac{337850594989449562706}{10789378417102975}
Divide 28379.449979113763267304-\frac{628644664339290417T}{12500000000000000} by 0.9063077870366499 by multiplying 28379.449979113763267304-\frac{628644664339290417T}{12500000000000000} by the reciprocal of 0.9063077870366499.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}