Evaluate
\frac{119}{24}\approx 4.958333333
Factor
\frac{7 \cdot 17}{2 ^ {3} \cdot 3} = 4\frac{23}{24} = 4.958333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)119}\\\end{array}
Use the 1^{st} digit 1 from dividend 119
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)119}\\\end{array}
Since 1 is less than 24, use the next digit 1 from dividend 119 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)119}\\\end{array}
Use the 2^{nd} digit 1 from dividend 119
\begin{array}{l}\phantom{24)}00\phantom{4}\\24\overline{)119}\\\end{array}
Since 11 is less than 24, use the next digit 9 from dividend 119 and add 0 to the quotient
\begin{array}{l}\phantom{24)}00\phantom{5}\\24\overline{)119}\\\end{array}
Use the 3^{rd} digit 9 from dividend 119
\begin{array}{l}\phantom{24)}004\phantom{6}\\24\overline{)119}\\\phantom{24)}\underline{\phantom{9}96\phantom{}}\\\phantom{24)9}23\\\end{array}
Find closest multiple of 24 to 119. We see that 4 \times 24 = 96 is the nearest. Now subtract 96 from 119 to get reminder 23. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }23
Since 23 is less than 24, stop the division. The reminder is 23. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}