Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\begin{array}{c}\phantom{\times}118732\\\underline{\times\phantom{}31699}\\\end{array}
First line up the numbers vertically and match the places from the right like this.
\begin{array}{c}\phantom{\times}118732\\\underline{\times\phantom{}31699}\\\phantom{\times}1068588\\\end{array}
Now multiply the first number with the 1^{st} digit in 2^{nd} number to get intermediate results. That is Multiply 118732 with 9. Write the result 1068588 at the end leaving 0 spaces to the right like this.
\begin{array}{c}\phantom{\times}118732\\\underline{\times\phantom{}31699}\\\phantom{\times}1068588\\\phantom{\times}1068588\phantom{9}\\\end{array}
Now multiply the first number with the 2^{nd} digit in 2^{nd} number to get intermediate results. That is Multiply 118732 with 9. Write the result 1068588 at the end leaving 1 spaces to the right like this.
\begin{array}{c}\phantom{\times}118732\\\underline{\times\phantom{}31699}\\\phantom{\times}1068588\\\phantom{\times}1068588\phantom{9}\\\phantom{\times}712392\phantom{99}\\\end{array}
Now multiply the first number with the 3^{rd} digit in 2^{nd} number to get intermediate results. That is Multiply 118732 with 6. Write the result 712392 at the end leaving 2 spaces to the right like this.
\begin{array}{c}\phantom{\times}118732\\\underline{\times\phantom{}31699}\\\phantom{\times}1068588\\\phantom{\times}1068588\phantom{9}\\\phantom{\times}712392\phantom{99}\\\phantom{\times}118732\phantom{999}\\\end{array}
Now multiply the first number with the 4^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 118732 with 1. Write the result 118732 at the end leaving 3 spaces to the right like this.
\begin{array}{c}\phantom{\times}118732\\\underline{\times\phantom{}31699}\\\phantom{\times}1068588\\\phantom{\times}1068588\phantom{9}\\\phantom{\times}712392\phantom{99}\\\phantom{\times}118732\phantom{999}\\\underline{\phantom{\times}356196\phantom{9999}}\\\end{array}
Now multiply the first number with the 5^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 118732 with 3. Write the result 356196 at the end leaving 4 spaces to the right like this.
\begin{array}{c}\phantom{\times}118732\\\underline{\times\phantom{}31699}\\\phantom{\times}1068588\\\phantom{\times}1068588\phantom{9}\\\phantom{\times}712392\phantom{99}\\\phantom{\times}118732\phantom{999}\\\underline{\phantom{\times}356196\phantom{9999}}\\\phantom{\times}-531281628\end{array}
Now add the intermediate results to get final answer.