Evaluate
\frac{59}{20}=2.95
Factor
\frac{59}{2 ^ {2} \cdot 5} = 2\frac{19}{20} = 2.95
Share
Copied to clipboard
\begin{array}{l}\phantom{40)}\phantom{1}\\40\overline{)118}\\\end{array}
Use the 1^{st} digit 1 from dividend 118
\begin{array}{l}\phantom{40)}0\phantom{2}\\40\overline{)118}\\\end{array}
Since 1 is less than 40, use the next digit 1 from dividend 118 and add 0 to the quotient
\begin{array}{l}\phantom{40)}0\phantom{3}\\40\overline{)118}\\\end{array}
Use the 2^{nd} digit 1 from dividend 118
\begin{array}{l}\phantom{40)}00\phantom{4}\\40\overline{)118}\\\end{array}
Since 11 is less than 40, use the next digit 8 from dividend 118 and add 0 to the quotient
\begin{array}{l}\phantom{40)}00\phantom{5}\\40\overline{)118}\\\end{array}
Use the 3^{rd} digit 8 from dividend 118
\begin{array}{l}\phantom{40)}002\phantom{6}\\40\overline{)118}\\\phantom{40)}\underline{\phantom{9}80\phantom{}}\\\phantom{40)9}38\\\end{array}
Find closest multiple of 40 to 118. We see that 2 \times 40 = 80 is the nearest. Now subtract 80 from 118 to get reminder 38. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }38
Since 38 is less than 40, stop the division. The reminder is 38. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}