Evaluate
\frac{292484}{1013}\approx 288.730503455
Factor
\frac{2 ^ {2} \cdot 73121}{1013} = 288\frac{740}{1013} = 288.7305034550839
Share
Copied to clipboard
\begin{array}{l}\phantom{4052)}\phantom{1}\\4052\overline{)1169936}\\\end{array}
Use the 1^{st} digit 1 from dividend 1169936
\begin{array}{l}\phantom{4052)}0\phantom{2}\\4052\overline{)1169936}\\\end{array}
Since 1 is less than 4052, use the next digit 1 from dividend 1169936 and add 0 to the quotient
\begin{array}{l}\phantom{4052)}0\phantom{3}\\4052\overline{)1169936}\\\end{array}
Use the 2^{nd} digit 1 from dividend 1169936
\begin{array}{l}\phantom{4052)}00\phantom{4}\\4052\overline{)1169936}\\\end{array}
Since 11 is less than 4052, use the next digit 6 from dividend 1169936 and add 0 to the quotient
\begin{array}{l}\phantom{4052)}00\phantom{5}\\4052\overline{)1169936}\\\end{array}
Use the 3^{rd} digit 6 from dividend 1169936
\begin{array}{l}\phantom{4052)}000\phantom{6}\\4052\overline{)1169936}\\\end{array}
Since 116 is less than 4052, use the next digit 9 from dividend 1169936 and add 0 to the quotient
\begin{array}{l}\phantom{4052)}000\phantom{7}\\4052\overline{)1169936}\\\end{array}
Use the 4^{th} digit 9 from dividend 1169936
\begin{array}{l}\phantom{4052)}0000\phantom{8}\\4052\overline{)1169936}\\\end{array}
Since 1169 is less than 4052, use the next digit 9 from dividend 1169936 and add 0 to the quotient
\begin{array}{l}\phantom{4052)}0000\phantom{9}\\4052\overline{)1169936}\\\end{array}
Use the 5^{th} digit 9 from dividend 1169936
\begin{array}{l}\phantom{4052)}00002\phantom{10}\\4052\overline{)1169936}\\\phantom{4052)}\underline{\phantom{9}8104\phantom{99}}\\\phantom{4052)9}3595\\\end{array}
Find closest multiple of 4052 to 11699. We see that 2 \times 4052 = 8104 is the nearest. Now subtract 8104 from 11699 to get reminder 3595. Add 2 to quotient.
\begin{array}{l}\phantom{4052)}00002\phantom{11}\\4052\overline{)1169936}\\\phantom{4052)}\underline{\phantom{9}8104\phantom{99}}\\\phantom{4052)9}35953\\\end{array}
Use the 6^{th} digit 3 from dividend 1169936
\begin{array}{l}\phantom{4052)}000028\phantom{12}\\4052\overline{)1169936}\\\phantom{4052)}\underline{\phantom{9}8104\phantom{99}}\\\phantom{4052)9}35953\\\phantom{4052)}\underline{\phantom{9}32416\phantom{9}}\\\phantom{4052)99}3537\\\end{array}
Find closest multiple of 4052 to 35953. We see that 8 \times 4052 = 32416 is the nearest. Now subtract 32416 from 35953 to get reminder 3537. Add 8 to quotient.
\begin{array}{l}\phantom{4052)}000028\phantom{13}\\4052\overline{)1169936}\\\phantom{4052)}\underline{\phantom{9}8104\phantom{99}}\\\phantom{4052)9}35953\\\phantom{4052)}\underline{\phantom{9}32416\phantom{9}}\\\phantom{4052)99}35376\\\end{array}
Use the 7^{th} digit 6 from dividend 1169936
\begin{array}{l}\phantom{4052)}0000288\phantom{14}\\4052\overline{)1169936}\\\phantom{4052)}\underline{\phantom{9}8104\phantom{99}}\\\phantom{4052)9}35953\\\phantom{4052)}\underline{\phantom{9}32416\phantom{9}}\\\phantom{4052)99}35376\\\phantom{4052)}\underline{\phantom{99}32416\phantom{}}\\\phantom{4052)999}2960\\\end{array}
Find closest multiple of 4052 to 35376. We see that 8 \times 4052 = 32416 is the nearest. Now subtract 32416 from 35376 to get reminder 2960. Add 8 to quotient.
\text{Quotient: }288 \text{Reminder: }2960
Since 2960 is less than 4052, stop the division. The reminder is 2960. The topmost line 0000288 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 288.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}