Evaluate
\frac{1160}{201}\approx 5.771144279
Factor
\frac{2 ^ {3} \cdot 5 \cdot 29}{3 \cdot 67} = 5\frac{155}{201} = 5.7711442786069655
Share
Copied to clipboard
\begin{array}{l}\phantom{201)}\phantom{1}\\201\overline{)1160}\\\end{array}
Use the 1^{st} digit 1 from dividend 1160
\begin{array}{l}\phantom{201)}0\phantom{2}\\201\overline{)1160}\\\end{array}
Since 1 is less than 201, use the next digit 1 from dividend 1160 and add 0 to the quotient
\begin{array}{l}\phantom{201)}0\phantom{3}\\201\overline{)1160}\\\end{array}
Use the 2^{nd} digit 1 from dividend 1160
\begin{array}{l}\phantom{201)}00\phantom{4}\\201\overline{)1160}\\\end{array}
Since 11 is less than 201, use the next digit 6 from dividend 1160 and add 0 to the quotient
\begin{array}{l}\phantom{201)}00\phantom{5}\\201\overline{)1160}\\\end{array}
Use the 3^{rd} digit 6 from dividend 1160
\begin{array}{l}\phantom{201)}000\phantom{6}\\201\overline{)1160}\\\end{array}
Since 116 is less than 201, use the next digit 0 from dividend 1160 and add 0 to the quotient
\begin{array}{l}\phantom{201)}000\phantom{7}\\201\overline{)1160}\\\end{array}
Use the 4^{th} digit 0 from dividend 1160
\begin{array}{l}\phantom{201)}0005\phantom{8}\\201\overline{)1160}\\\phantom{201)}\underline{\phantom{}1005\phantom{}}\\\phantom{201)9}155\\\end{array}
Find closest multiple of 201 to 1160. We see that 5 \times 201 = 1005 is the nearest. Now subtract 1005 from 1160 to get reminder 155. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }155
Since 155 is less than 201, stop the division. The reminder is 155. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}