Solve for x
x=\frac{\sqrt{11846}}{2}+58\approx 112.419665563
x=-\frac{\sqrt{11846}}{2}+58\approx 3.580334437
Graph
Quiz
Quadratic Equation
5 problems similar to:
116 = x + \frac { 15 \times 6.3 + 10 \times 30.8 } { x }
Share
Copied to clipboard
116x=xx+15\times 6.3+10\times 30.8
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
116x=x^{2}+15\times 6.3+10\times 30.8
Multiply x and x to get x^{2}.
116x=x^{2}+94.5+10\times 30.8
Multiply 15 and 6.3 to get 94.5.
116x=x^{2}+94.5+308
Multiply 10 and 30.8 to get 308.
116x=x^{2}+402.5
Add 94.5 and 308 to get 402.5.
116x-x^{2}=402.5
Subtract x^{2} from both sides.
116x-x^{2}-402.5=0
Subtract 402.5 from both sides.
-x^{2}+116x-402.5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-116±\sqrt{116^{2}-4\left(-1\right)\left(-402.5\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 116 for b, and -402.5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-116±\sqrt{13456-4\left(-1\right)\left(-402.5\right)}}{2\left(-1\right)}
Square 116.
x=\frac{-116±\sqrt{13456+4\left(-402.5\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-116±\sqrt{13456-1610}}{2\left(-1\right)}
Multiply 4 times -402.5.
x=\frac{-116±\sqrt{11846}}{2\left(-1\right)}
Add 13456 to -1610.
x=\frac{-116±\sqrt{11846}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{11846}-116}{-2}
Now solve the equation x=\frac{-116±\sqrt{11846}}{-2} when ± is plus. Add -116 to \sqrt{11846}.
x=-\frac{\sqrt{11846}}{2}+58
Divide -116+\sqrt{11846} by -2.
x=\frac{-\sqrt{11846}-116}{-2}
Now solve the equation x=\frac{-116±\sqrt{11846}}{-2} when ± is minus. Subtract \sqrt{11846} from -116.
x=\frac{\sqrt{11846}}{2}+58
Divide -116-\sqrt{11846} by -2.
x=-\frac{\sqrt{11846}}{2}+58 x=\frac{\sqrt{11846}}{2}+58
The equation is now solved.
116x=xx+15\times 6.3+10\times 30.8
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
116x=x^{2}+15\times 6.3+10\times 30.8
Multiply x and x to get x^{2}.
116x=x^{2}+94.5+10\times 30.8
Multiply 15 and 6.3 to get 94.5.
116x=x^{2}+94.5+308
Multiply 10 and 30.8 to get 308.
116x=x^{2}+402.5
Add 94.5 and 308 to get 402.5.
116x-x^{2}=402.5
Subtract x^{2} from both sides.
-x^{2}+116x=402.5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+116x}{-1}=\frac{402.5}{-1}
Divide both sides by -1.
x^{2}+\frac{116}{-1}x=\frac{402.5}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-116x=\frac{402.5}{-1}
Divide 116 by -1.
x^{2}-116x=-402.5
Divide 402.5 by -1.
x^{2}-116x+\left(-58\right)^{2}=-402.5+\left(-58\right)^{2}
Divide -116, the coefficient of the x term, by 2 to get -58. Then add the square of -58 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-116x+3364=-402.5+3364
Square -58.
x^{2}-116x+3364=2961.5
Add -402.5 to 3364.
\left(x-58\right)^{2}=2961.5
Factor x^{2}-116x+3364. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-58\right)^{2}}=\sqrt{2961.5}
Take the square root of both sides of the equation.
x-58=\frac{\sqrt{11846}}{2} x-58=-\frac{\sqrt{11846}}{2}
Simplify.
x=\frac{\sqrt{11846}}{2}+58 x=-\frac{\sqrt{11846}}{2}+58
Add 58 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}