Solve for n
n=\sqrt{761}-23\approx 4.586228448
n=-\sqrt{761}-23\approx -50.586228448
Share
Copied to clipboard
232=n\left(50+n-1-3\right)
Multiply both sides of the equation by 2.
232=n\left(49+n-3\right)
Subtract 1 from 50 to get 49.
232=n\left(46+n\right)
Subtract 3 from 49 to get 46.
232=46n+n^{2}
Use the distributive property to multiply n by 46+n.
46n+n^{2}=232
Swap sides so that all variable terms are on the left hand side.
46n+n^{2}-232=0
Subtract 232 from both sides.
n^{2}+46n-232=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-46±\sqrt{46^{2}-4\left(-232\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 46 for b, and -232 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-46±\sqrt{2116-4\left(-232\right)}}{2}
Square 46.
n=\frac{-46±\sqrt{2116+928}}{2}
Multiply -4 times -232.
n=\frac{-46±\sqrt{3044}}{2}
Add 2116 to 928.
n=\frac{-46±2\sqrt{761}}{2}
Take the square root of 3044.
n=\frac{2\sqrt{761}-46}{2}
Now solve the equation n=\frac{-46±2\sqrt{761}}{2} when ± is plus. Add -46 to 2\sqrt{761}.
n=\sqrt{761}-23
Divide -46+2\sqrt{761} by 2.
n=\frac{-2\sqrt{761}-46}{2}
Now solve the equation n=\frac{-46±2\sqrt{761}}{2} when ± is minus. Subtract 2\sqrt{761} from -46.
n=-\sqrt{761}-23
Divide -46-2\sqrt{761} by 2.
n=\sqrt{761}-23 n=-\sqrt{761}-23
The equation is now solved.
232=n\left(50+n-1-3\right)
Multiply both sides of the equation by 2.
232=n\left(49+n-3\right)
Subtract 1 from 50 to get 49.
232=n\left(46+n\right)
Subtract 3 from 49 to get 46.
232=46n+n^{2}
Use the distributive property to multiply n by 46+n.
46n+n^{2}=232
Swap sides so that all variable terms are on the left hand side.
n^{2}+46n=232
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
n^{2}+46n+23^{2}=232+23^{2}
Divide 46, the coefficient of the x term, by 2 to get 23. Then add the square of 23 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+46n+529=232+529
Square 23.
n^{2}+46n+529=761
Add 232 to 529.
\left(n+23\right)^{2}=761
Factor n^{2}+46n+529. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+23\right)^{2}}=\sqrt{761}
Take the square root of both sides of the equation.
n+23=\sqrt{761} n+23=-\sqrt{761}
Simplify.
n=\sqrt{761}-23 n=-\sqrt{761}-23
Subtract 23 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}