Evaluate
4
Factor
2^{2}
Share
Copied to clipboard
\begin{array}{l}\phantom{29)}\phantom{1}\\29\overline{)116}\\\end{array}
Use the 1^{st} digit 1 from dividend 116
\begin{array}{l}\phantom{29)}0\phantom{2}\\29\overline{)116}\\\end{array}
Since 1 is less than 29, use the next digit 1 from dividend 116 and add 0 to the quotient
\begin{array}{l}\phantom{29)}0\phantom{3}\\29\overline{)116}\\\end{array}
Use the 2^{nd} digit 1 from dividend 116
\begin{array}{l}\phantom{29)}00\phantom{4}\\29\overline{)116}\\\end{array}
Since 11 is less than 29, use the next digit 6 from dividend 116 and add 0 to the quotient
\begin{array}{l}\phantom{29)}00\phantom{5}\\29\overline{)116}\\\end{array}
Use the 3^{rd} digit 6 from dividend 116
\begin{array}{l}\phantom{29)}004\phantom{6}\\29\overline{)116}\\\phantom{29)}\underline{\phantom{}116\phantom{}}\\\phantom{29)999}0\\\end{array}
Find closest multiple of 29 to 116. We see that 4 \times 29 = 116 is the nearest. Now subtract 116 from 116 to get reminder 0. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }0
Since 0 is less than 29, stop the division. The reminder is 0. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}