Solve for x (complex solution)
x=\sqrt{913}-29\approx 1.215889859
x=-\left(\sqrt{913}+29\right)\approx -59.215889859
Solve for x
x=\sqrt{913}-29\approx 1.215889859
x=-\sqrt{913}-29\approx -59.215889859
Graph
Share
Copied to clipboard
1152x+16x^{2}=224x+1152
Add 16x^{2} to both sides.
1152x+16x^{2}-224x=1152
Subtract 224x from both sides.
928x+16x^{2}=1152
Combine 1152x and -224x to get 928x.
928x+16x^{2}-1152=0
Subtract 1152 from both sides.
16x^{2}+928x-1152=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-928±\sqrt{928^{2}-4\times 16\left(-1152\right)}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, 928 for b, and -1152 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-928±\sqrt{861184-4\times 16\left(-1152\right)}}{2\times 16}
Square 928.
x=\frac{-928±\sqrt{861184-64\left(-1152\right)}}{2\times 16}
Multiply -4 times 16.
x=\frac{-928±\sqrt{861184+73728}}{2\times 16}
Multiply -64 times -1152.
x=\frac{-928±\sqrt{934912}}{2\times 16}
Add 861184 to 73728.
x=\frac{-928±32\sqrt{913}}{2\times 16}
Take the square root of 934912.
x=\frac{-928±32\sqrt{913}}{32}
Multiply 2 times 16.
x=\frac{32\sqrt{913}-928}{32}
Now solve the equation x=\frac{-928±32\sqrt{913}}{32} when ± is plus. Add -928 to 32\sqrt{913}.
x=\sqrt{913}-29
Divide -928+32\sqrt{913} by 32.
x=\frac{-32\sqrt{913}-928}{32}
Now solve the equation x=\frac{-928±32\sqrt{913}}{32} when ± is minus. Subtract 32\sqrt{913} from -928.
x=-\sqrt{913}-29
Divide -928-32\sqrt{913} by 32.
x=\sqrt{913}-29 x=-\sqrt{913}-29
The equation is now solved.
1152x+16x^{2}=224x+1152
Add 16x^{2} to both sides.
1152x+16x^{2}-224x=1152
Subtract 224x from both sides.
928x+16x^{2}=1152
Combine 1152x and -224x to get 928x.
16x^{2}+928x=1152
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{16x^{2}+928x}{16}=\frac{1152}{16}
Divide both sides by 16.
x^{2}+\frac{928}{16}x=\frac{1152}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}+58x=\frac{1152}{16}
Divide 928 by 16.
x^{2}+58x=72
Divide 1152 by 16.
x^{2}+58x+29^{2}=72+29^{2}
Divide 58, the coefficient of the x term, by 2 to get 29. Then add the square of 29 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+58x+841=72+841
Square 29.
x^{2}+58x+841=913
Add 72 to 841.
\left(x+29\right)^{2}=913
Factor x^{2}+58x+841. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+29\right)^{2}}=\sqrt{913}
Take the square root of both sides of the equation.
x+29=\sqrt{913} x+29=-\sqrt{913}
Simplify.
x=\sqrt{913}-29 x=-\sqrt{913}-29
Subtract 29 from both sides of the equation.
1152x+16x^{2}=224x+1152
Add 16x^{2} to both sides.
1152x+16x^{2}-224x=1152
Subtract 224x from both sides.
928x+16x^{2}=1152
Combine 1152x and -224x to get 928x.
928x+16x^{2}-1152=0
Subtract 1152 from both sides.
16x^{2}+928x-1152=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-928±\sqrt{928^{2}-4\times 16\left(-1152\right)}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, 928 for b, and -1152 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-928±\sqrt{861184-4\times 16\left(-1152\right)}}{2\times 16}
Square 928.
x=\frac{-928±\sqrt{861184-64\left(-1152\right)}}{2\times 16}
Multiply -4 times 16.
x=\frac{-928±\sqrt{861184+73728}}{2\times 16}
Multiply -64 times -1152.
x=\frac{-928±\sqrt{934912}}{2\times 16}
Add 861184 to 73728.
x=\frac{-928±32\sqrt{913}}{2\times 16}
Take the square root of 934912.
x=\frac{-928±32\sqrt{913}}{32}
Multiply 2 times 16.
x=\frac{32\sqrt{913}-928}{32}
Now solve the equation x=\frac{-928±32\sqrt{913}}{32} when ± is plus. Add -928 to 32\sqrt{913}.
x=\sqrt{913}-29
Divide -928+32\sqrt{913} by 32.
x=\frac{-32\sqrt{913}-928}{32}
Now solve the equation x=\frac{-928±32\sqrt{913}}{32} when ± is minus. Subtract 32\sqrt{913} from -928.
x=-\sqrt{913}-29
Divide -928-32\sqrt{913} by 32.
x=\sqrt{913}-29 x=-\sqrt{913}-29
The equation is now solved.
1152x+16x^{2}=224x+1152
Add 16x^{2} to both sides.
1152x+16x^{2}-224x=1152
Subtract 224x from both sides.
928x+16x^{2}=1152
Combine 1152x and -224x to get 928x.
16x^{2}+928x=1152
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{16x^{2}+928x}{16}=\frac{1152}{16}
Divide both sides by 16.
x^{2}+\frac{928}{16}x=\frac{1152}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}+58x=\frac{1152}{16}
Divide 928 by 16.
x^{2}+58x=72
Divide 1152 by 16.
x^{2}+58x+29^{2}=72+29^{2}
Divide 58, the coefficient of the x term, by 2 to get 29. Then add the square of 29 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+58x+841=72+841
Square 29.
x^{2}+58x+841=913
Add 72 to 841.
\left(x+29\right)^{2}=913
Factor x^{2}+58x+841. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+29\right)^{2}}=\sqrt{913}
Take the square root of both sides of the equation.
x+29=\sqrt{913} x+29=-\sqrt{913}
Simplify.
x=\sqrt{913}-29 x=-\sqrt{913}-29
Subtract 29 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}