Evaluate
\frac{144}{95}\approx 1.515789474
Factor
\frac{2 ^ {4} \cdot 3 ^ {2}}{5 \cdot 19} = 1\frac{49}{95} = 1.5157894736842106
Share
Copied to clipboard
\begin{array}{l}\phantom{760)}\phantom{1}\\760\overline{)1152}\\\end{array}
Use the 1^{st} digit 1 from dividend 1152
\begin{array}{l}\phantom{760)}0\phantom{2}\\760\overline{)1152}\\\end{array}
Since 1 is less than 760, use the next digit 1 from dividend 1152 and add 0 to the quotient
\begin{array}{l}\phantom{760)}0\phantom{3}\\760\overline{)1152}\\\end{array}
Use the 2^{nd} digit 1 from dividend 1152
\begin{array}{l}\phantom{760)}00\phantom{4}\\760\overline{)1152}\\\end{array}
Since 11 is less than 760, use the next digit 5 from dividend 1152 and add 0 to the quotient
\begin{array}{l}\phantom{760)}00\phantom{5}\\760\overline{)1152}\\\end{array}
Use the 3^{rd} digit 5 from dividend 1152
\begin{array}{l}\phantom{760)}000\phantom{6}\\760\overline{)1152}\\\end{array}
Since 115 is less than 760, use the next digit 2 from dividend 1152 and add 0 to the quotient
\begin{array}{l}\phantom{760)}000\phantom{7}\\760\overline{)1152}\\\end{array}
Use the 4^{th} digit 2 from dividend 1152
\begin{array}{l}\phantom{760)}0001\phantom{8}\\760\overline{)1152}\\\phantom{760)}\underline{\phantom{9}760\phantom{}}\\\phantom{760)9}392\\\end{array}
Find closest multiple of 760 to 1152. We see that 1 \times 760 = 760 is the nearest. Now subtract 760 from 1152 to get reminder 392. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }392
Since 392 is less than 760, stop the division. The reminder is 392. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}