Evaluate
\frac{23}{4}=5.75
Factor
\frac{23}{2 ^ {2}} = 5\frac{3}{4} = 5.75
Share
Copied to clipboard
\begin{array}{l}\phantom{200)}\phantom{1}\\200\overline{)1150}\\\end{array}
Use the 1^{st} digit 1 from dividend 1150
\begin{array}{l}\phantom{200)}0\phantom{2}\\200\overline{)1150}\\\end{array}
Since 1 is less than 200, use the next digit 1 from dividend 1150 and add 0 to the quotient
\begin{array}{l}\phantom{200)}0\phantom{3}\\200\overline{)1150}\\\end{array}
Use the 2^{nd} digit 1 from dividend 1150
\begin{array}{l}\phantom{200)}00\phantom{4}\\200\overline{)1150}\\\end{array}
Since 11 is less than 200, use the next digit 5 from dividend 1150 and add 0 to the quotient
\begin{array}{l}\phantom{200)}00\phantom{5}\\200\overline{)1150}\\\end{array}
Use the 3^{rd} digit 5 from dividend 1150
\begin{array}{l}\phantom{200)}000\phantom{6}\\200\overline{)1150}\\\end{array}
Since 115 is less than 200, use the next digit 0 from dividend 1150 and add 0 to the quotient
\begin{array}{l}\phantom{200)}000\phantom{7}\\200\overline{)1150}\\\end{array}
Use the 4^{th} digit 0 from dividend 1150
\begin{array}{l}\phantom{200)}0005\phantom{8}\\200\overline{)1150}\\\phantom{200)}\underline{\phantom{}1000\phantom{}}\\\phantom{200)9}150\\\end{array}
Find closest multiple of 200 to 1150. We see that 5 \times 200 = 1000 is the nearest. Now subtract 1000 from 1150 to get reminder 150. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }150
Since 150 is less than 200, stop the division. The reminder is 150. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}