Evaluate
\frac{23}{2}=11.5
Factor
\frac{23}{2} = 11\frac{1}{2} = 11.5
Share
Copied to clipboard
\begin{array}{l}\phantom{10)}\phantom{1}\\10\overline{)115}\\\end{array}
Use the 1^{st} digit 1 from dividend 115
\begin{array}{l}\phantom{10)}0\phantom{2}\\10\overline{)115}\\\end{array}
Since 1 is less than 10, use the next digit 1 from dividend 115 and add 0 to the quotient
\begin{array}{l}\phantom{10)}0\phantom{3}\\10\overline{)115}\\\end{array}
Use the 2^{nd} digit 1 from dividend 115
\begin{array}{l}\phantom{10)}01\phantom{4}\\10\overline{)115}\\\phantom{10)}\underline{\phantom{}10\phantom{9}}\\\phantom{10)9}1\\\end{array}
Find closest multiple of 10 to 11. We see that 1 \times 10 = 10 is the nearest. Now subtract 10 from 11 to get reminder 1. Add 1 to quotient.
\begin{array}{l}\phantom{10)}01\phantom{5}\\10\overline{)115}\\\phantom{10)}\underline{\phantom{}10\phantom{9}}\\\phantom{10)9}15\\\end{array}
Use the 3^{rd} digit 5 from dividend 115
\begin{array}{l}\phantom{10)}011\phantom{6}\\10\overline{)115}\\\phantom{10)}\underline{\phantom{}10\phantom{9}}\\\phantom{10)9}15\\\phantom{10)}\underline{\phantom{9}10\phantom{}}\\\phantom{10)99}5\\\end{array}
Find closest multiple of 10 to 15. We see that 1 \times 10 = 10 is the nearest. Now subtract 10 from 15 to get reminder 5. Add 1 to quotient.
\text{Quotient: }11 \text{Reminder: }5
Since 5 is less than 10, stop the division. The reminder is 5. The topmost line 011 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}