Evaluate
\frac{57257}{180}\approx 318.094444444
Factor
\frac{31 \cdot 1847}{2 ^ {2} \cdot 3 ^ {2} \cdot 5} = 318\frac{17}{180} = 318.09444444444443
Share
Copied to clipboard
\begin{array}{l}\phantom{360)}\phantom{1}\\360\overline{)114514}\\\end{array}
Use the 1^{st} digit 1 from dividend 114514
\begin{array}{l}\phantom{360)}0\phantom{2}\\360\overline{)114514}\\\end{array}
Since 1 is less than 360, use the next digit 1 from dividend 114514 and add 0 to the quotient
\begin{array}{l}\phantom{360)}0\phantom{3}\\360\overline{)114514}\\\end{array}
Use the 2^{nd} digit 1 from dividend 114514
\begin{array}{l}\phantom{360)}00\phantom{4}\\360\overline{)114514}\\\end{array}
Since 11 is less than 360, use the next digit 4 from dividend 114514 and add 0 to the quotient
\begin{array}{l}\phantom{360)}00\phantom{5}\\360\overline{)114514}\\\end{array}
Use the 3^{rd} digit 4 from dividend 114514
\begin{array}{l}\phantom{360)}000\phantom{6}\\360\overline{)114514}\\\end{array}
Since 114 is less than 360, use the next digit 5 from dividend 114514 and add 0 to the quotient
\begin{array}{l}\phantom{360)}000\phantom{7}\\360\overline{)114514}\\\end{array}
Use the 4^{th} digit 5 from dividend 114514
\begin{array}{l}\phantom{360)}0003\phantom{8}\\360\overline{)114514}\\\phantom{360)}\underline{\phantom{}1080\phantom{99}}\\\phantom{360)99}65\\\end{array}
Find closest multiple of 360 to 1145. We see that 3 \times 360 = 1080 is the nearest. Now subtract 1080 from 1145 to get reminder 65. Add 3 to quotient.
\begin{array}{l}\phantom{360)}0003\phantom{9}\\360\overline{)114514}\\\phantom{360)}\underline{\phantom{}1080\phantom{99}}\\\phantom{360)99}651\\\end{array}
Use the 5^{th} digit 1 from dividend 114514
\begin{array}{l}\phantom{360)}00031\phantom{10}\\360\overline{)114514}\\\phantom{360)}\underline{\phantom{}1080\phantom{99}}\\\phantom{360)99}651\\\phantom{360)}\underline{\phantom{99}360\phantom{9}}\\\phantom{360)99}291\\\end{array}
Find closest multiple of 360 to 651. We see that 1 \times 360 = 360 is the nearest. Now subtract 360 from 651 to get reminder 291. Add 1 to quotient.
\begin{array}{l}\phantom{360)}00031\phantom{11}\\360\overline{)114514}\\\phantom{360)}\underline{\phantom{}1080\phantom{99}}\\\phantom{360)99}651\\\phantom{360)}\underline{\phantom{99}360\phantom{9}}\\\phantom{360)99}2914\\\end{array}
Use the 6^{th} digit 4 from dividend 114514
\begin{array}{l}\phantom{360)}000318\phantom{12}\\360\overline{)114514}\\\phantom{360)}\underline{\phantom{}1080\phantom{99}}\\\phantom{360)99}651\\\phantom{360)}\underline{\phantom{99}360\phantom{9}}\\\phantom{360)99}2914\\\phantom{360)}\underline{\phantom{99}2880\phantom{}}\\\phantom{360)9999}34\\\end{array}
Find closest multiple of 360 to 2914. We see that 8 \times 360 = 2880 is the nearest. Now subtract 2880 from 2914 to get reminder 34. Add 8 to quotient.
\text{Quotient: }318 \text{Reminder: }34
Since 34 is less than 360, stop the division. The reminder is 34. The topmost line 000318 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 318.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}