Evaluate
\frac{1142}{11}\approx 103.818181818
Factor
\frac{2 \cdot 571}{11} = 103\frac{9}{11} = 103.81818181818181
Share
Copied to clipboard
\begin{array}{l}\phantom{11)}\phantom{1}\\11\overline{)1142}\\\end{array}
Use the 1^{st} digit 1 from dividend 1142
\begin{array}{l}\phantom{11)}0\phantom{2}\\11\overline{)1142}\\\end{array}
Since 1 is less than 11, use the next digit 1 from dividend 1142 and add 0 to the quotient
\begin{array}{l}\phantom{11)}0\phantom{3}\\11\overline{)1142}\\\end{array}
Use the 2^{nd} digit 1 from dividend 1142
\begin{array}{l}\phantom{11)}01\phantom{4}\\11\overline{)1142}\\\phantom{11)}\underline{\phantom{}11\phantom{99}}\\\phantom{11)99}0\\\end{array}
Find closest multiple of 11 to 11. We see that 1 \times 11 = 11 is the nearest. Now subtract 11 from 11 to get reminder 0. Add 1 to quotient.
\begin{array}{l}\phantom{11)}01\phantom{5}\\11\overline{)1142}\\\phantom{11)}\underline{\phantom{}11\phantom{99}}\\\phantom{11)99}4\\\end{array}
Use the 3^{rd} digit 4 from dividend 1142
\begin{array}{l}\phantom{11)}010\phantom{6}\\11\overline{)1142}\\\phantom{11)}\underline{\phantom{}11\phantom{99}}\\\phantom{11)99}4\\\end{array}
Since 4 is less than 11, use the next digit 2 from dividend 1142 and add 0 to the quotient
\begin{array}{l}\phantom{11)}010\phantom{7}\\11\overline{)1142}\\\phantom{11)}\underline{\phantom{}11\phantom{99}}\\\phantom{11)99}42\\\end{array}
Use the 4^{th} digit 2 from dividend 1142
\begin{array}{l}\phantom{11)}0103\phantom{8}\\11\overline{)1142}\\\phantom{11)}\underline{\phantom{}11\phantom{99}}\\\phantom{11)99}42\\\phantom{11)}\underline{\phantom{99}33\phantom{}}\\\phantom{11)999}9\\\end{array}
Find closest multiple of 11 to 42. We see that 3 \times 11 = 33 is the nearest. Now subtract 33 from 42 to get reminder 9. Add 3 to quotient.
\text{Quotient: }103 \text{Reminder: }9
Since 9 is less than 11, stop the division. The reminder is 9. The topmost line 0103 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 103.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}