Skip to main content
Solve for F
Tick mark Image

Similar Problems from Web Search

Share

113.6 ^ {2} = F ^ {2} + 2 F ^ {2} - 2 {(F)} {(2 F)} 0.7193398003386512
Evaluate trigonometric functions in the problem
113.6^{2}=F^{2}+2F^{2}-2F^{2}\times 2\times 0.7193398003386512
Multiply F and F to get F^{2}.
12904.96=F^{2}+2F^{2}-2F^{2}\times 2\times 0.7193398003386512
Calculate 113.6 to the power of 2 and get 12904.96.
12904.96=3F^{2}-2F^{2}\times 2\times 0.7193398003386512
Combine F^{2} and 2F^{2} to get 3F^{2}.
12904.96=3F^{2}-4F^{2}\times 0.7193398003386512
Multiply 2 and 2 to get 4.
12904.96=3F^{2}-2.8773592013546048F^{2}
Multiply 4 and 0.7193398003386512 to get 2.8773592013546048.
12904.96=0.1226407986453952F^{2}
Combine 3F^{2} and -2.8773592013546048F^{2} to get 0.1226407986453952F^{2}.
0.1226407986453952F^{2}=12904.96
Swap sides so that all variable terms are on the left hand side.
F^{2}=\frac{12904.96}{0.1226407986453952}
Divide both sides by 0.1226407986453952.
F^{2}=\frac{129049600000000000000}{1226407986453952}
Expand \frac{12904.96}{0.1226407986453952} by multiplying both numerator and the denominator by 10000000000000000.
F^{2}=\frac{2016400000000000000}{19162624788343}
Reduce the fraction \frac{129049600000000000000}{1226407986453952} to lowest terms by extracting and canceling out 64.
F=\frac{1420000000\sqrt{19162624788343}}{19162624788343} F=-\frac{1420000000\sqrt{19162624788343}}{19162624788343}
Take the square root of both sides of the equation.
113.6 ^ {2} = F ^ {2} + 2 F ^ {2} - 2 {(F)} {(2 F)} 0.7193398003386512
Evaluate trigonometric functions in the problem
113.6^{2}=F^{2}+2F^{2}-2F^{2}\times 2\times 0.7193398003386512
Multiply F and F to get F^{2}.
12904.96=F^{2}+2F^{2}-2F^{2}\times 2\times 0.7193398003386512
Calculate 113.6 to the power of 2 and get 12904.96.
12904.96=3F^{2}-2F^{2}\times 2\times 0.7193398003386512
Combine F^{2} and 2F^{2} to get 3F^{2}.
12904.96=3F^{2}-4F^{2}\times 0.7193398003386512
Multiply 2 and 2 to get 4.
12904.96=3F^{2}-2.8773592013546048F^{2}
Multiply 4 and 0.7193398003386512 to get 2.8773592013546048.
12904.96=0.1226407986453952F^{2}
Combine 3F^{2} and -2.8773592013546048F^{2} to get 0.1226407986453952F^{2}.
0.1226407986453952F^{2}=12904.96
Swap sides so that all variable terms are on the left hand side.
0.1226407986453952F^{2}-12904.96=0
Subtract 12904.96 from both sides.
F=\frac{0±\sqrt{0^{2}-4\times 0.1226407986453952\left(-12904.96\right)}}{2\times 0.1226407986453952}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 0.1226407986453952 for a, 0 for b, and -12904.96 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
F=\frac{0±\sqrt{-4\times 0.1226407986453952\left(-12904.96\right)}}{2\times 0.1226407986453952}
Square 0.
F=\frac{0±\sqrt{-0.4905631945815808\left(-12904.96\right)}}{2\times 0.1226407986453952}
Multiply -4 times 0.1226407986453952.
F=\frac{0±\sqrt{6330.698403547516960768}}{2\times 0.1226407986453952}
Multiply -0.4905631945815808 times -12904.96 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
F=\frac{0±\frac{71\sqrt{19162624788343}}{3906250}}{2\times 0.1226407986453952}
Take the square root of 6330.698403547516960768.
F=\frac{0±\frac{71\sqrt{19162624788343}}{3906250}}{0.2452815972907904}
Multiply 2 times 0.1226407986453952.
F=\frac{1420000000\sqrt{19162624788343}}{19162624788343}
Now solve the equation F=\frac{0±\frac{71\sqrt{19162624788343}}{3906250}}{0.2452815972907904} when ± is plus.
F=-\frac{1420000000\sqrt{19162624788343}}{19162624788343}
Now solve the equation F=\frac{0±\frac{71\sqrt{19162624788343}}{3906250}}{0.2452815972907904} when ± is minus.
F=\frac{1420000000\sqrt{19162624788343}}{19162624788343} F=-\frac{1420000000\sqrt{19162624788343}}{19162624788343}
The equation is now solved.