Solve for x
x=76
x=1126
Graph
Share
Copied to clipboard
85576=\left(76+1126-x\right)x
Multiply 1126 and 76 to get 85576.
85576=\left(1202-x\right)x
Add 76 and 1126 to get 1202.
85576=1202x-x^{2}
Use the distributive property to multiply 1202-x by x.
1202x-x^{2}=85576
Swap sides so that all variable terms are on the left hand side.
1202x-x^{2}-85576=0
Subtract 85576 from both sides.
-x^{2}+1202x-85576=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1202±\sqrt{1202^{2}-4\left(-1\right)\left(-85576\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 1202 for b, and -85576 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1202±\sqrt{1444804-4\left(-1\right)\left(-85576\right)}}{2\left(-1\right)}
Square 1202.
x=\frac{-1202±\sqrt{1444804+4\left(-85576\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-1202±\sqrt{1444804-342304}}{2\left(-1\right)}
Multiply 4 times -85576.
x=\frac{-1202±\sqrt{1102500}}{2\left(-1\right)}
Add 1444804 to -342304.
x=\frac{-1202±1050}{2\left(-1\right)}
Take the square root of 1102500.
x=\frac{-1202±1050}{-2}
Multiply 2 times -1.
x=-\frac{152}{-2}
Now solve the equation x=\frac{-1202±1050}{-2} when ± is plus. Add -1202 to 1050.
x=76
Divide -152 by -2.
x=-\frac{2252}{-2}
Now solve the equation x=\frac{-1202±1050}{-2} when ± is minus. Subtract 1050 from -1202.
x=1126
Divide -2252 by -2.
x=76 x=1126
The equation is now solved.
85576=\left(76+1126-x\right)x
Multiply 1126 and 76 to get 85576.
85576=\left(1202-x\right)x
Add 76 and 1126 to get 1202.
85576=1202x-x^{2}
Use the distributive property to multiply 1202-x by x.
1202x-x^{2}=85576
Swap sides so that all variable terms are on the left hand side.
-x^{2}+1202x=85576
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+1202x}{-1}=\frac{85576}{-1}
Divide both sides by -1.
x^{2}+\frac{1202}{-1}x=\frac{85576}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-1202x=\frac{85576}{-1}
Divide 1202 by -1.
x^{2}-1202x=-85576
Divide 85576 by -1.
x^{2}-1202x+\left(-601\right)^{2}=-85576+\left(-601\right)^{2}
Divide -1202, the coefficient of the x term, by 2 to get -601. Then add the square of -601 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-1202x+361201=-85576+361201
Square -601.
x^{2}-1202x+361201=275625
Add -85576 to 361201.
\left(x-601\right)^{2}=275625
Factor x^{2}-1202x+361201. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-601\right)^{2}}=\sqrt{275625}
Take the square root of both sides of the equation.
x-601=525 x-601=-525
Simplify.
x=1126 x=76
Add 601 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}