Evaluate
\frac{14065}{3}\approx 4688.333333333
Factor
\frac{5 \cdot 29 \cdot 97}{3} = 4688\frac{1}{3} = 4688.333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)112520}\\\end{array}
Use the 1^{st} digit 1 from dividend 112520
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)112520}\\\end{array}
Since 1 is less than 24, use the next digit 1 from dividend 112520 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)112520}\\\end{array}
Use the 2^{nd} digit 1 from dividend 112520
\begin{array}{l}\phantom{24)}00\phantom{4}\\24\overline{)112520}\\\end{array}
Since 11 is less than 24, use the next digit 2 from dividend 112520 and add 0 to the quotient
\begin{array}{l}\phantom{24)}00\phantom{5}\\24\overline{)112520}\\\end{array}
Use the 3^{rd} digit 2 from dividend 112520
\begin{array}{l}\phantom{24)}004\phantom{6}\\24\overline{)112520}\\\phantom{24)}\underline{\phantom{9}96\phantom{999}}\\\phantom{24)9}16\\\end{array}
Find closest multiple of 24 to 112. We see that 4 \times 24 = 96 is the nearest. Now subtract 96 from 112 to get reminder 16. Add 4 to quotient.
\begin{array}{l}\phantom{24)}004\phantom{7}\\24\overline{)112520}\\\phantom{24)}\underline{\phantom{9}96\phantom{999}}\\\phantom{24)9}165\\\end{array}
Use the 4^{th} digit 5 from dividend 112520
\begin{array}{l}\phantom{24)}0046\phantom{8}\\24\overline{)112520}\\\phantom{24)}\underline{\phantom{9}96\phantom{999}}\\\phantom{24)9}165\\\phantom{24)}\underline{\phantom{9}144\phantom{99}}\\\phantom{24)99}21\\\end{array}
Find closest multiple of 24 to 165. We see that 6 \times 24 = 144 is the nearest. Now subtract 144 from 165 to get reminder 21. Add 6 to quotient.
\begin{array}{l}\phantom{24)}0046\phantom{9}\\24\overline{)112520}\\\phantom{24)}\underline{\phantom{9}96\phantom{999}}\\\phantom{24)9}165\\\phantom{24)}\underline{\phantom{9}144\phantom{99}}\\\phantom{24)99}212\\\end{array}
Use the 5^{th} digit 2 from dividend 112520
\begin{array}{l}\phantom{24)}00468\phantom{10}\\24\overline{)112520}\\\phantom{24)}\underline{\phantom{9}96\phantom{999}}\\\phantom{24)9}165\\\phantom{24)}\underline{\phantom{9}144\phantom{99}}\\\phantom{24)99}212\\\phantom{24)}\underline{\phantom{99}192\phantom{9}}\\\phantom{24)999}20\\\end{array}
Find closest multiple of 24 to 212. We see that 8 \times 24 = 192 is the nearest. Now subtract 192 from 212 to get reminder 20. Add 8 to quotient.
\begin{array}{l}\phantom{24)}00468\phantom{11}\\24\overline{)112520}\\\phantom{24)}\underline{\phantom{9}96\phantom{999}}\\\phantom{24)9}165\\\phantom{24)}\underline{\phantom{9}144\phantom{99}}\\\phantom{24)99}212\\\phantom{24)}\underline{\phantom{99}192\phantom{9}}\\\phantom{24)999}200\\\end{array}
Use the 6^{th} digit 0 from dividend 112520
\begin{array}{l}\phantom{24)}004688\phantom{12}\\24\overline{)112520}\\\phantom{24)}\underline{\phantom{9}96\phantom{999}}\\\phantom{24)9}165\\\phantom{24)}\underline{\phantom{9}144\phantom{99}}\\\phantom{24)99}212\\\phantom{24)}\underline{\phantom{99}192\phantom{9}}\\\phantom{24)999}200\\\phantom{24)}\underline{\phantom{999}192\phantom{}}\\\phantom{24)99999}8\\\end{array}
Find closest multiple of 24 to 200. We see that 8 \times 24 = 192 is the nearest. Now subtract 192 from 200 to get reminder 8. Add 8 to quotient.
\text{Quotient: }4688 \text{Reminder: }8
Since 8 is less than 24, stop the division. The reminder is 8. The topmost line 004688 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4688.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}