Solve for x
x=10\sqrt{25008881}+50010\approx 100018.880211418
x=50010-10\sqrt{25008881}\approx 1.119788582
Graph
Share
Copied to clipboard
112=100x\left(1+0.0002-0.00001x\right)
Use the distributive property to multiply 0.00001 by 20-x.
112=100x\left(1.0002-0.00001x\right)
Add 1 and 0.0002 to get 1.0002.
112=100.02x-0.001x^{2}
Use the distributive property to multiply 100x by 1.0002-0.00001x.
100.02x-0.001x^{2}=112
Swap sides so that all variable terms are on the left hand side.
100.02x-0.001x^{2}-112=0
Subtract 112 from both sides.
-0.001x^{2}+100.02x-112=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-100.02±\sqrt{100.02^{2}-4\left(-0.001\right)\left(-112\right)}}{2\left(-0.001\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -0.001 for a, 100.02 for b, and -112 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-100.02±\sqrt{10004.0004-4\left(-0.001\right)\left(-112\right)}}{2\left(-0.001\right)}
Square 100.02 by squaring both the numerator and the denominator of the fraction.
x=\frac{-100.02±\sqrt{10004.0004+0.004\left(-112\right)}}{2\left(-0.001\right)}
Multiply -4 times -0.001.
x=\frac{-100.02±\sqrt{10004.0004-0.448}}{2\left(-0.001\right)}
Multiply 0.004 times -112.
x=\frac{-100.02±\sqrt{10003.5524}}{2\left(-0.001\right)}
Add 10004.0004 to -0.448 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-100.02±\frac{\sqrt{25008881}}{50}}{2\left(-0.001\right)}
Take the square root of 10003.5524.
x=\frac{-100.02±\frac{\sqrt{25008881}}{50}}{-0.002}
Multiply 2 times -0.001.
x=\frac{\sqrt{25008881}-5001}{-0.002\times 50}
Now solve the equation x=\frac{-100.02±\frac{\sqrt{25008881}}{50}}{-0.002} when ± is plus. Add -100.02 to \frac{\sqrt{25008881}}{50}.
x=50010-10\sqrt{25008881}
Divide \frac{-5001+\sqrt{25008881}}{50} by -0.002 by multiplying \frac{-5001+\sqrt{25008881}}{50} by the reciprocal of -0.002.
x=\frac{-\sqrt{25008881}-5001}{-0.002\times 50}
Now solve the equation x=\frac{-100.02±\frac{\sqrt{25008881}}{50}}{-0.002} when ± is minus. Subtract \frac{\sqrt{25008881}}{50} from -100.02.
x=10\sqrt{25008881}+50010
Divide \frac{-5001-\sqrt{25008881}}{50} by -0.002 by multiplying \frac{-5001-\sqrt{25008881}}{50} by the reciprocal of -0.002.
x=50010-10\sqrt{25008881} x=10\sqrt{25008881}+50010
The equation is now solved.
112=100x\left(1+0.0002-0.00001x\right)
Use the distributive property to multiply 0.00001 by 20-x.
112=100x\left(1.0002-0.00001x\right)
Add 1 and 0.0002 to get 1.0002.
112=100.02x-0.001x^{2}
Use the distributive property to multiply 100x by 1.0002-0.00001x.
100.02x-0.001x^{2}=112
Swap sides so that all variable terms are on the left hand side.
-0.001x^{2}+100.02x=112
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-0.001x^{2}+100.02x}{-0.001}=\frac{112}{-0.001}
Multiply both sides by -1000.
x^{2}+\frac{100.02}{-0.001}x=\frac{112}{-0.001}
Dividing by -0.001 undoes the multiplication by -0.001.
x^{2}-100020x=\frac{112}{-0.001}
Divide 100.02 by -0.001 by multiplying 100.02 by the reciprocal of -0.001.
x^{2}-100020x=-112000
Divide 112 by -0.001 by multiplying 112 by the reciprocal of -0.001.
x^{2}-100020x+\left(-50010\right)^{2}=-112000+\left(-50010\right)^{2}
Divide -100020, the coefficient of the x term, by 2 to get -50010. Then add the square of -50010 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-100020x+2501000100=-112000+2501000100
Square -50010.
x^{2}-100020x+2501000100=2500888100
Add -112000 to 2501000100.
\left(x-50010\right)^{2}=2500888100
Factor x^{2}-100020x+2501000100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-50010\right)^{2}}=\sqrt{2500888100}
Take the square root of both sides of the equation.
x-50010=10\sqrt{25008881} x-50010=-10\sqrt{25008881}
Simplify.
x=10\sqrt{25008881}+50010 x=50010-10\sqrt{25008881}
Add 50010 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}