Evaluate
\frac{28}{19}\approx 1.473684211
Factor
\frac{2 ^ {2} \cdot 7}{19} = 1\frac{9}{19} = 1.4736842105263157
Share
Copied to clipboard
\begin{array}{l}\phantom{76)}\phantom{1}\\76\overline{)112}\\\end{array}
Use the 1^{st} digit 1 from dividend 112
\begin{array}{l}\phantom{76)}0\phantom{2}\\76\overline{)112}\\\end{array}
Since 1 is less than 76, use the next digit 1 from dividend 112 and add 0 to the quotient
\begin{array}{l}\phantom{76)}0\phantom{3}\\76\overline{)112}\\\end{array}
Use the 2^{nd} digit 1 from dividend 112
\begin{array}{l}\phantom{76)}00\phantom{4}\\76\overline{)112}\\\end{array}
Since 11 is less than 76, use the next digit 2 from dividend 112 and add 0 to the quotient
\begin{array}{l}\phantom{76)}00\phantom{5}\\76\overline{)112}\\\end{array}
Use the 3^{rd} digit 2 from dividend 112
\begin{array}{l}\phantom{76)}001\phantom{6}\\76\overline{)112}\\\phantom{76)}\underline{\phantom{9}76\phantom{}}\\\phantom{76)9}36\\\end{array}
Find closest multiple of 76 to 112. We see that 1 \times 76 = 76 is the nearest. Now subtract 76 from 112 to get reminder 36. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }36
Since 36 is less than 76, stop the division. The reminder is 36. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}