Evaluate
\frac{8}{3}\approx 2.666666667
Factor
\frac{2 ^ {3}}{3} = 2\frac{2}{3} = 2.6666666666666665
Share
Copied to clipboard
\begin{array}{l}\phantom{42)}\phantom{1}\\42\overline{)112}\\\end{array}
Use the 1^{st} digit 1 from dividend 112
\begin{array}{l}\phantom{42)}0\phantom{2}\\42\overline{)112}\\\end{array}
Since 1 is less than 42, use the next digit 1 from dividend 112 and add 0 to the quotient
\begin{array}{l}\phantom{42)}0\phantom{3}\\42\overline{)112}\\\end{array}
Use the 2^{nd} digit 1 from dividend 112
\begin{array}{l}\phantom{42)}00\phantom{4}\\42\overline{)112}\\\end{array}
Since 11 is less than 42, use the next digit 2 from dividend 112 and add 0 to the quotient
\begin{array}{l}\phantom{42)}00\phantom{5}\\42\overline{)112}\\\end{array}
Use the 3^{rd} digit 2 from dividend 112
\begin{array}{l}\phantom{42)}002\phantom{6}\\42\overline{)112}\\\phantom{42)}\underline{\phantom{9}84\phantom{}}\\\phantom{42)9}28\\\end{array}
Find closest multiple of 42 to 112. We see that 2 \times 42 = 84 is the nearest. Now subtract 84 from 112 to get reminder 28. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }28
Since 28 is less than 42, stop the division. The reminder is 28. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}