Evaluate
\frac{14}{3}\approx 4.666666667
Factor
\frac{2 \cdot 7}{3} = 4\frac{2}{3} = 4.666666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)112}\\\end{array}
Use the 1^{st} digit 1 from dividend 112
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)112}\\\end{array}
Since 1 is less than 24, use the next digit 1 from dividend 112 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)112}\\\end{array}
Use the 2^{nd} digit 1 from dividend 112
\begin{array}{l}\phantom{24)}00\phantom{4}\\24\overline{)112}\\\end{array}
Since 11 is less than 24, use the next digit 2 from dividend 112 and add 0 to the quotient
\begin{array}{l}\phantom{24)}00\phantom{5}\\24\overline{)112}\\\end{array}
Use the 3^{rd} digit 2 from dividend 112
\begin{array}{l}\phantom{24)}004\phantom{6}\\24\overline{)112}\\\phantom{24)}\underline{\phantom{9}96\phantom{}}\\\phantom{24)9}16\\\end{array}
Find closest multiple of 24 to 112. We see that 4 \times 24 = 96 is the nearest. Now subtract 96 from 112 to get reminder 16. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }16
Since 16 is less than 24, stop the division. The reminder is 16. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}