Evaluate
\frac{112}{17}\approx 6.588235294
Factor
\frac{2 ^ {4} \cdot 7}{17} = 6\frac{10}{17} = 6.588235294117647
Share
Copied to clipboard
\begin{array}{l}\phantom{17)}\phantom{1}\\17\overline{)112}\\\end{array}
Use the 1^{st} digit 1 from dividend 112
\begin{array}{l}\phantom{17)}0\phantom{2}\\17\overline{)112}\\\end{array}
Since 1 is less than 17, use the next digit 1 from dividend 112 and add 0 to the quotient
\begin{array}{l}\phantom{17)}0\phantom{3}\\17\overline{)112}\\\end{array}
Use the 2^{nd} digit 1 from dividend 112
\begin{array}{l}\phantom{17)}00\phantom{4}\\17\overline{)112}\\\end{array}
Since 11 is less than 17, use the next digit 2 from dividend 112 and add 0 to the quotient
\begin{array}{l}\phantom{17)}00\phantom{5}\\17\overline{)112}\\\end{array}
Use the 3^{rd} digit 2 from dividend 112
\begin{array}{l}\phantom{17)}006\phantom{6}\\17\overline{)112}\\\phantom{17)}\underline{\phantom{}102\phantom{}}\\\phantom{17)9}10\\\end{array}
Find closest multiple of 17 to 112. We see that 6 \times 17 = 102 is the nearest. Now subtract 102 from 112 to get reminder 10. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }10
Since 10 is less than 17, stop the division. The reminder is 10. The topmost line 006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}