Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

12544+x^{2}=13
Calculate 112 to the power of 2 and get 12544.
x^{2}=13-12544
Subtract 12544 from both sides.
x^{2}=-12531
Subtract 12544 from 13 to get -12531.
x=\sqrt{12531}i x=-\sqrt{12531}i
The equation is now solved.
12544+x^{2}=13
Calculate 112 to the power of 2 and get 12544.
12544+x^{2}-13=0
Subtract 13 from both sides.
12531+x^{2}=0
Subtract 13 from 12544 to get 12531.
x^{2}+12531=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 12531}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and 12531 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 12531}}{2}
Square 0.
x=\frac{0±\sqrt{-50124}}{2}
Multiply -4 times 12531.
x=\frac{0±2\sqrt{12531}i}{2}
Take the square root of -50124.
x=\sqrt{12531}i
Now solve the equation x=\frac{0±2\sqrt{12531}i}{2} when ± is plus.
x=-\sqrt{12531}i
Now solve the equation x=\frac{0±2\sqrt{12531}i}{2} when ± is minus.
x=\sqrt{12531}i x=-\sqrt{12531}i
The equation is now solved.