Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

112=6x-\frac{75}{2}x^{2}
Multiply \frac{1}{2} and 75 to get \frac{75}{2}.
6x-\frac{75}{2}x^{2}=112
Swap sides so that all variable terms are on the left hand side.
6x-\frac{75}{2}x^{2}-112=0
Subtract 112 from both sides.
-\frac{75}{2}x^{2}+6x-112=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{6^{2}-4\left(-\frac{75}{2}\right)\left(-112\right)}}{2\left(-\frac{75}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{75}{2} for a, 6 for b, and -112 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-\frac{75}{2}\right)\left(-112\right)}}{2\left(-\frac{75}{2}\right)}
Square 6.
x=\frac{-6±\sqrt{36+150\left(-112\right)}}{2\left(-\frac{75}{2}\right)}
Multiply -4 times -\frac{75}{2}.
x=\frac{-6±\sqrt{36-16800}}{2\left(-\frac{75}{2}\right)}
Multiply 150 times -112.
x=\frac{-6±\sqrt{-16764}}{2\left(-\frac{75}{2}\right)}
Add 36 to -16800.
x=\frac{-6±2\sqrt{4191}i}{2\left(-\frac{75}{2}\right)}
Take the square root of -16764.
x=\frac{-6±2\sqrt{4191}i}{-75}
Multiply 2 times -\frac{75}{2}.
x=\frac{-6+2\sqrt{4191}i}{-75}
Now solve the equation x=\frac{-6±2\sqrt{4191}i}{-75} when ± is plus. Add -6 to 2i\sqrt{4191}.
x=-\frac{2\sqrt{4191}i}{75}+\frac{2}{25}
Divide -6+2i\sqrt{4191} by -75.
x=\frac{-2\sqrt{4191}i-6}{-75}
Now solve the equation x=\frac{-6±2\sqrt{4191}i}{-75} when ± is minus. Subtract 2i\sqrt{4191} from -6.
x=\frac{2\sqrt{4191}i}{75}+\frac{2}{25}
Divide -6-2i\sqrt{4191} by -75.
x=-\frac{2\sqrt{4191}i}{75}+\frac{2}{25} x=\frac{2\sqrt{4191}i}{75}+\frac{2}{25}
The equation is now solved.
112=6x-\frac{75}{2}x^{2}
Multiply \frac{1}{2} and 75 to get \frac{75}{2}.
6x-\frac{75}{2}x^{2}=112
Swap sides so that all variable terms are on the left hand side.
-\frac{75}{2}x^{2}+6x=112
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{75}{2}x^{2}+6x}{-\frac{75}{2}}=\frac{112}{-\frac{75}{2}}
Divide both sides of the equation by -\frac{75}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{6}{-\frac{75}{2}}x=\frac{112}{-\frac{75}{2}}
Dividing by -\frac{75}{2} undoes the multiplication by -\frac{75}{2}.
x^{2}-\frac{4}{25}x=\frac{112}{-\frac{75}{2}}
Divide 6 by -\frac{75}{2} by multiplying 6 by the reciprocal of -\frac{75}{2}.
x^{2}-\frac{4}{25}x=-\frac{224}{75}
Divide 112 by -\frac{75}{2} by multiplying 112 by the reciprocal of -\frac{75}{2}.
x^{2}-\frac{4}{25}x+\left(-\frac{2}{25}\right)^{2}=-\frac{224}{75}+\left(-\frac{2}{25}\right)^{2}
Divide -\frac{4}{25}, the coefficient of the x term, by 2 to get -\frac{2}{25}. Then add the square of -\frac{2}{25} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4}{25}x+\frac{4}{625}=-\frac{224}{75}+\frac{4}{625}
Square -\frac{2}{25} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4}{25}x+\frac{4}{625}=-\frac{5588}{1875}
Add -\frac{224}{75} to \frac{4}{625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{2}{25}\right)^{2}=-\frac{5588}{1875}
Factor x^{2}-\frac{4}{25}x+\frac{4}{625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{25}\right)^{2}}=\sqrt{-\frac{5588}{1875}}
Take the square root of both sides of the equation.
x-\frac{2}{25}=\frac{2\sqrt{4191}i}{75} x-\frac{2}{25}=-\frac{2\sqrt{4191}i}{75}
Simplify.
x=\frac{2\sqrt{4191}i}{75}+\frac{2}{25} x=-\frac{2\sqrt{4191}i}{75}+\frac{2}{25}
Add \frac{2}{25} to both sides of the equation.