Evaluate
\frac{1119}{1000}=1.119
Factor
\frac{3 \cdot 373}{2 ^ {3} \cdot 5 ^ {3}} = 1\frac{119}{1000} = 1.119
Share
Copied to clipboard
\begin{array}{l}\phantom{1000)}\phantom{1}\\1000\overline{)1119}\\\end{array}
Use the 1^{st} digit 1 from dividend 1119
\begin{array}{l}\phantom{1000)}0\phantom{2}\\1000\overline{)1119}\\\end{array}
Since 1 is less than 1000, use the next digit 1 from dividend 1119 and add 0 to the quotient
\begin{array}{l}\phantom{1000)}0\phantom{3}\\1000\overline{)1119}\\\end{array}
Use the 2^{nd} digit 1 from dividend 1119
\begin{array}{l}\phantom{1000)}00\phantom{4}\\1000\overline{)1119}\\\end{array}
Since 11 is less than 1000, use the next digit 1 from dividend 1119 and add 0 to the quotient
\begin{array}{l}\phantom{1000)}00\phantom{5}\\1000\overline{)1119}\\\end{array}
Use the 3^{rd} digit 1 from dividend 1119
\begin{array}{l}\phantom{1000)}000\phantom{6}\\1000\overline{)1119}\\\end{array}
Since 111 is less than 1000, use the next digit 9 from dividend 1119 and add 0 to the quotient
\begin{array}{l}\phantom{1000)}000\phantom{7}\\1000\overline{)1119}\\\end{array}
Use the 4^{th} digit 9 from dividend 1119
\begin{array}{l}\phantom{1000)}0001\phantom{8}\\1000\overline{)1119}\\\phantom{1000)}\underline{\phantom{}1000\phantom{}}\\\phantom{1000)9}119\\\end{array}
Find closest multiple of 1000 to 1119. We see that 1 \times 1000 = 1000 is the nearest. Now subtract 1000 from 1119 to get reminder 119. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }119
Since 119 is less than 1000, stop the division. The reminder is 119. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}