Solve for x (complex solution)
x=\frac{11+3\sqrt{111}i}{2}\approx 5.5+15.803480629i
x=\frac{-3\sqrt{111}i+11}{2}\approx 5.5-15.803480629i
Graph
Share
Copied to clipboard
-10x^{2}+110x=2800
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-10x^{2}+110x-2800=2800-2800
Subtract 2800 from both sides of the equation.
-10x^{2}+110x-2800=0
Subtracting 2800 from itself leaves 0.
x=\frac{-110±\sqrt{110^{2}-4\left(-10\right)\left(-2800\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 110 for b, and -2800 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-110±\sqrt{12100-4\left(-10\right)\left(-2800\right)}}{2\left(-10\right)}
Square 110.
x=\frac{-110±\sqrt{12100+40\left(-2800\right)}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-110±\sqrt{12100-112000}}{2\left(-10\right)}
Multiply 40 times -2800.
x=\frac{-110±\sqrt{-99900}}{2\left(-10\right)}
Add 12100 to -112000.
x=\frac{-110±30\sqrt{111}i}{2\left(-10\right)}
Take the square root of -99900.
x=\frac{-110±30\sqrt{111}i}{-20}
Multiply 2 times -10.
x=\frac{-110+30\sqrt{111}i}{-20}
Now solve the equation x=\frac{-110±30\sqrt{111}i}{-20} when ± is plus. Add -110 to 30i\sqrt{111}.
x=\frac{-3\sqrt{111}i+11}{2}
Divide -110+30i\sqrt{111} by -20.
x=\frac{-30\sqrt{111}i-110}{-20}
Now solve the equation x=\frac{-110±30\sqrt{111}i}{-20} when ± is minus. Subtract 30i\sqrt{111} from -110.
x=\frac{11+3\sqrt{111}i}{2}
Divide -110-30i\sqrt{111} by -20.
x=\frac{-3\sqrt{111}i+11}{2} x=\frac{11+3\sqrt{111}i}{2}
The equation is now solved.
-10x^{2}+110x=2800
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-10x^{2}+110x}{-10}=\frac{2800}{-10}
Divide both sides by -10.
x^{2}+\frac{110}{-10}x=\frac{2800}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}-11x=\frac{2800}{-10}
Divide 110 by -10.
x^{2}-11x=-280
Divide 2800 by -10.
x^{2}-11x+\left(-\frac{11}{2}\right)^{2}=-280+\left(-\frac{11}{2}\right)^{2}
Divide -11, the coefficient of the x term, by 2 to get -\frac{11}{2}. Then add the square of -\frac{11}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-11x+\frac{121}{4}=-280+\frac{121}{4}
Square -\frac{11}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-11x+\frac{121}{4}=-\frac{999}{4}
Add -280 to \frac{121}{4}.
\left(x-\frac{11}{2}\right)^{2}=-\frac{999}{4}
Factor x^{2}-11x+\frac{121}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{2}\right)^{2}}=\sqrt{-\frac{999}{4}}
Take the square root of both sides of the equation.
x-\frac{11}{2}=\frac{3\sqrt{111}i}{2} x-\frac{11}{2}=-\frac{3\sqrt{111}i}{2}
Simplify.
x=\frac{11+3\sqrt{111}i}{2} x=\frac{-3\sqrt{111}i+11}{2}
Add \frac{11}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}