Evaluate
1
Factor
1
Share
Copied to clipboard
\begin{array}{l}\phantom{11011)}\phantom{1}\\11011\overline{)11011}\\\end{array}
Use the 1^{st} digit 1 from dividend 11011
\begin{array}{l}\phantom{11011)}0\phantom{2}\\11011\overline{)11011}\\\end{array}
Since 1 is less than 11011, use the next digit 1 from dividend 11011 and add 0 to the quotient
\begin{array}{l}\phantom{11011)}0\phantom{3}\\11011\overline{)11011}\\\end{array}
Use the 2^{nd} digit 1 from dividend 11011
\begin{array}{l}\phantom{11011)}00\phantom{4}\\11011\overline{)11011}\\\end{array}
Since 11 is less than 11011, use the next digit 0 from dividend 11011 and add 0 to the quotient
\begin{array}{l}\phantom{11011)}00\phantom{5}\\11011\overline{)11011}\\\end{array}
Use the 3^{rd} digit 0 from dividend 11011
\begin{array}{l}\phantom{11011)}000\phantom{6}\\11011\overline{)11011}\\\end{array}
Since 110 is less than 11011, use the next digit 1 from dividend 11011 and add 0 to the quotient
\begin{array}{l}\phantom{11011)}000\phantom{7}\\11011\overline{)11011}\\\end{array}
Use the 4^{th} digit 1 from dividend 11011
\begin{array}{l}\phantom{11011)}0000\phantom{8}\\11011\overline{)11011}\\\end{array}
Since 1101 is less than 11011, use the next digit 1 from dividend 11011 and add 0 to the quotient
\begin{array}{l}\phantom{11011)}0000\phantom{9}\\11011\overline{)11011}\\\end{array}
Use the 5^{th} digit 1 from dividend 11011
\begin{array}{l}\phantom{11011)}00001\phantom{10}\\11011\overline{)11011}\\\phantom{11011)}\underline{\phantom{}11011\phantom{}}\\\phantom{11011)99999}0\\\end{array}
Find closest multiple of 11011 to 11011. We see that 1 \times 11011 = 11011 is the nearest. Now subtract 11011 from 11011 to get reminder 0. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }0
Since 0 is less than 11011, stop the division. The reminder is 0. The topmost line 00001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}