Evaluate
\frac{1100111011}{11}\approx 100010091.909090909
Factor
\frac{43 \cdot 25583977}{11} = 100010091\frac{10}{11} = 100010091.9090909
Share
Copied to clipboard
\begin{array}{l}\phantom{11)}\phantom{1}\\11\overline{)1100111011}\\\end{array}
Use the 1^{st} digit 1 from dividend 1100111011
\begin{array}{l}\phantom{11)}0\phantom{2}\\11\overline{)1100111011}\\\end{array}
Since 1 is less than 11, use the next digit 1 from dividend 1100111011 and add 0 to the quotient
\begin{array}{l}\phantom{11)}0\phantom{3}\\11\overline{)1100111011}\\\end{array}
Use the 2^{nd} digit 1 from dividend 1100111011
\begin{array}{l}\phantom{11)}01\phantom{4}\\11\overline{)1100111011}\\\phantom{11)}\underline{\phantom{}11\phantom{99999999}}\\\phantom{11)99}0\\\end{array}
Find closest multiple of 11 to 11. We see that 1 \times 11 = 11 is the nearest. Now subtract 11 from 11 to get reminder 0. Add 1 to quotient.
\begin{array}{l}\phantom{11)}01\phantom{5}\\11\overline{)1100111011}\\\phantom{11)}\underline{\phantom{}11\phantom{99999999}}\\\phantom{11)999}0\\\end{array}
Use the 3^{rd} digit 0 from dividend 1100111011
\begin{array}{l}\phantom{11)}010\phantom{6}\\11\overline{)1100111011}\\\phantom{11)}\underline{\phantom{}11\phantom{99999999}}\\\phantom{11)999}0\\\end{array}
Since 0 is less than 11, use the next digit 0 from dividend 1100111011 and add 0 to the quotient
\begin{array}{l}\phantom{11)}010\phantom{7}\\11\overline{)1100111011}\\\phantom{11)}\underline{\phantom{}11\phantom{99999999}}\\\phantom{11)9999}0\\\end{array}
Use the 4^{th} digit 0 from dividend 1100111011
\begin{array}{l}\phantom{11)}0100\phantom{8}\\11\overline{)1100111011}\\\phantom{11)}\underline{\phantom{}11\phantom{99999999}}\\\phantom{11)9999}0\\\end{array}
Since 0 is less than 11, use the next digit 1 from dividend 1100111011 and add 0 to the quotient
\begin{array}{l}\phantom{11)}0100\phantom{9}\\11\overline{)1100111011}\\\phantom{11)}\underline{\phantom{}11\phantom{99999999}}\\\phantom{11)9999}1\\\end{array}
Use the 5^{th} digit 1 from dividend 1100111011
\begin{array}{l}\phantom{11)}01000\phantom{10}\\11\overline{)1100111011}\\\phantom{11)}\underline{\phantom{}11\phantom{99999999}}\\\phantom{11)9999}1\\\end{array}
Since 1 is less than 11, use the next digit 1 from dividend 1100111011 and add 0 to the quotient
\begin{array}{l}\phantom{11)}01000\phantom{11}\\11\overline{)1100111011}\\\phantom{11)}\underline{\phantom{}11\phantom{99999999}}\\\phantom{11)9999}11\\\end{array}
Use the 6^{th} digit 1 from dividend 1100111011
\begin{array}{l}\phantom{11)}010001\phantom{12}\\11\overline{)1100111011}\\\phantom{11)}\underline{\phantom{}11\phantom{99999999}}\\\phantom{11)9999}11\\\phantom{11)}\underline{\phantom{9999}11\phantom{9999}}\\\phantom{11)999999}0\\\end{array}
Find closest multiple of 11 to 11. We see that 1 \times 11 = 11 is the nearest. Now subtract 11 from 11 to get reminder 0. Add 1 to quotient.
\begin{array}{l}\phantom{11)}010001\phantom{13}\\11\overline{)1100111011}\\\phantom{11)}\underline{\phantom{}11\phantom{99999999}}\\\phantom{11)9999}11\\\phantom{11)}\underline{\phantom{9999}11\phantom{9999}}\\\phantom{11)999999}1\\\end{array}
Use the 7^{th} digit 1 from dividend 1100111011
\begin{array}{l}\phantom{11)}0100010\phantom{14}\\11\overline{)1100111011}\\\phantom{11)}\underline{\phantom{}11\phantom{99999999}}\\\phantom{11)9999}11\\\phantom{11)}\underline{\phantom{9999}11\phantom{9999}}\\\phantom{11)999999}1\\\end{array}
Since 1 is less than 11, use the next digit 0 from dividend 1100111011 and add 0 to the quotient
\begin{array}{l}\phantom{11)}0100010\phantom{15}\\11\overline{)1100111011}\\\phantom{11)}\underline{\phantom{}11\phantom{99999999}}\\\phantom{11)9999}11\\\phantom{11)}\underline{\phantom{9999}11\phantom{9999}}\\\phantom{11)999999}10\\\end{array}
Use the 8^{th} digit 0 from dividend 1100111011
\begin{array}{l}\phantom{11)}01000100\phantom{16}\\11\overline{)1100111011}\\\phantom{11)}\underline{\phantom{}11\phantom{99999999}}\\\phantom{11)9999}11\\\phantom{11)}\underline{\phantom{9999}11\phantom{9999}}\\\phantom{11)999999}10\\\end{array}
Since 10 is less than 11, use the next digit 1 from dividend 1100111011 and add 0 to the quotient
\begin{array}{l}\phantom{11)}01000100\phantom{17}\\11\overline{)1100111011}\\\phantom{11)}\underline{\phantom{}11\phantom{99999999}}\\\phantom{11)9999}11\\\phantom{11)}\underline{\phantom{9999}11\phantom{9999}}\\\phantom{11)999999}101\\\end{array}
Use the 9^{th} digit 1 from dividend 1100111011
\begin{array}{l}\phantom{11)}010001009\phantom{18}\\11\overline{)1100111011}\\\phantom{11)}\underline{\phantom{}11\phantom{99999999}}\\\phantom{11)9999}11\\\phantom{11)}\underline{\phantom{9999}11\phantom{9999}}\\\phantom{11)999999}101\\\phantom{11)}\underline{\phantom{9999999}99\phantom{9}}\\\phantom{11)99999999}2\\\end{array}
Find closest multiple of 11 to 101. We see that 9 \times 11 = 99 is the nearest. Now subtract 99 from 101 to get reminder 2. Add 9 to quotient.
\begin{array}{l}\phantom{11)}010001009\phantom{19}\\11\overline{)1100111011}\\\phantom{11)}\underline{\phantom{}11\phantom{99999999}}\\\phantom{11)9999}11\\\phantom{11)}\underline{\phantom{9999}11\phantom{9999}}\\\phantom{11)999999}101\\\phantom{11)}\underline{\phantom{9999999}99\phantom{9}}\\\phantom{11)99999999}21\\\end{array}
Use the 10^{th} digit 1 from dividend 1100111011
\begin{array}{l}\phantom{11)}0100010091\phantom{20}\\11\overline{)1100111011}\\\phantom{11)}\underline{\phantom{}11\phantom{99999999}}\\\phantom{11)9999}11\\\phantom{11)}\underline{\phantom{9999}11\phantom{9999}}\\\phantom{11)999999}101\\\phantom{11)}\underline{\phantom{9999999}99\phantom{9}}\\\phantom{11)99999999}21\\\phantom{11)}\underline{\phantom{99999999}11\phantom{}}\\\phantom{11)99999999}10\\\end{array}
Find closest multiple of 11 to 21. We see that 1 \times 11 = 11 is the nearest. Now subtract 11 from 21 to get reminder 10. Add 1 to quotient.
\text{Quotient: }100010091 \text{Reminder: }10
Since 10 is less than 11, stop the division. The reminder is 10. The topmost line 0100010091 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 100010091.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}