Evaluate
\frac{50}{19}\approx 2.631578947
Factor
\frac{2 \cdot 5 ^ {2}}{19} = 2\frac{12}{19} = 2.6315789473684212
Share
Copied to clipboard
\begin{array}{l}\phantom{418)}\phantom{1}\\418\overline{)1100}\\\end{array}
Use the 1^{st} digit 1 from dividend 1100
\begin{array}{l}\phantom{418)}0\phantom{2}\\418\overline{)1100}\\\end{array}
Since 1 is less than 418, use the next digit 1 from dividend 1100 and add 0 to the quotient
\begin{array}{l}\phantom{418)}0\phantom{3}\\418\overline{)1100}\\\end{array}
Use the 2^{nd} digit 1 from dividend 1100
\begin{array}{l}\phantom{418)}00\phantom{4}\\418\overline{)1100}\\\end{array}
Since 11 is less than 418, use the next digit 0 from dividend 1100 and add 0 to the quotient
\begin{array}{l}\phantom{418)}00\phantom{5}\\418\overline{)1100}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1100
\begin{array}{l}\phantom{418)}000\phantom{6}\\418\overline{)1100}\\\end{array}
Since 110 is less than 418, use the next digit 0 from dividend 1100 and add 0 to the quotient
\begin{array}{l}\phantom{418)}000\phantom{7}\\418\overline{)1100}\\\end{array}
Use the 4^{th} digit 0 from dividend 1100
\begin{array}{l}\phantom{418)}0002\phantom{8}\\418\overline{)1100}\\\phantom{418)}\underline{\phantom{9}836\phantom{}}\\\phantom{418)9}264\\\end{array}
Find closest multiple of 418 to 1100. We see that 2 \times 418 = 836 is the nearest. Now subtract 836 from 1100 to get reminder 264. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }264
Since 264 is less than 418, stop the division. The reminder is 264. The topmost line 0002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}