Solve for R
R = \frac{242}{5} = 48\frac{2}{5} = 48.4
Share
Copied to clipboard
1100=\frac{48400\left(484+R\right)}{484R}
Variable R cannot be equal to -484 since division by zero is not defined. Divide 48400 by \frac{484R}{484+R} by multiplying 48400 by the reciprocal of \frac{484R}{484+R}.
1100=\frac{100\left(R+484\right)}{R}
Cancel out 484 in both numerator and denominator.
1100=\frac{100R+48400}{R}
Use the distributive property to multiply 100 by R+484.
\frac{100R+48400}{R}=1100
Swap sides so that all variable terms are on the left hand side.
100R+48400=1100R
Variable R cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by R.
100R+48400-1100R=0
Subtract 1100R from both sides.
-1000R+48400=0
Combine 100R and -1100R to get -1000R.
-1000R=-48400
Subtract 48400 from both sides. Anything subtracted from zero gives its negation.
R=\frac{-48400}{-1000}
Divide both sides by -1000.
R=\frac{242}{5}
Reduce the fraction \frac{-48400}{-1000} to lowest terms by extracting and canceling out -200.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}