110+134+142+89 \times 30 \% +80 \times 30 \% +84 \times 50 \% +80 \times 50 \% +91 \times 90 \%
Evaluate
\frac{3003}{5}=600.6
Factor
\frac{3 \cdot 7 \cdot 11 \cdot 13}{5} = 600\frac{3}{5} = 600.6
Share
Copied to clipboard
244+142+89\times \frac{30}{100}+80\times \frac{30}{100}+84\times \frac{50}{100}+80\times \frac{50}{100}+91\times \frac{90}{100}
Add 110 and 134 to get 244.
386+89\times \frac{30}{100}+80\times \frac{30}{100}+84\times \frac{50}{100}+80\times \frac{50}{100}+91\times \frac{90}{100}
Add 244 and 142 to get 386.
386+89\times \frac{3}{10}+80\times \frac{30}{100}+84\times \frac{50}{100}+80\times \frac{50}{100}+91\times \frac{90}{100}
Reduce the fraction \frac{30}{100} to lowest terms by extracting and canceling out 10.
386+\frac{89\times 3}{10}+80\times \frac{30}{100}+84\times \frac{50}{100}+80\times \frac{50}{100}+91\times \frac{90}{100}
Express 89\times \frac{3}{10} as a single fraction.
386+\frac{267}{10}+80\times \frac{30}{100}+84\times \frac{50}{100}+80\times \frac{50}{100}+91\times \frac{90}{100}
Multiply 89 and 3 to get 267.
\frac{3860}{10}+\frac{267}{10}+80\times \frac{30}{100}+84\times \frac{50}{100}+80\times \frac{50}{100}+91\times \frac{90}{100}
Convert 386 to fraction \frac{3860}{10}.
\frac{3860+267}{10}+80\times \frac{30}{100}+84\times \frac{50}{100}+80\times \frac{50}{100}+91\times \frac{90}{100}
Since \frac{3860}{10} and \frac{267}{10} have the same denominator, add them by adding their numerators.
\frac{4127}{10}+80\times \frac{30}{100}+84\times \frac{50}{100}+80\times \frac{50}{100}+91\times \frac{90}{100}
Add 3860 and 267 to get 4127.
\frac{4127}{10}+80\times \frac{3}{10}+84\times \frac{50}{100}+80\times \frac{50}{100}+91\times \frac{90}{100}
Reduce the fraction \frac{30}{100} to lowest terms by extracting and canceling out 10.
\frac{4127}{10}+\frac{80\times 3}{10}+84\times \frac{50}{100}+80\times \frac{50}{100}+91\times \frac{90}{100}
Express 80\times \frac{3}{10} as a single fraction.
\frac{4127}{10}+\frac{240}{10}+84\times \frac{50}{100}+80\times \frac{50}{100}+91\times \frac{90}{100}
Multiply 80 and 3 to get 240.
\frac{4127+240}{10}+84\times \frac{50}{100}+80\times \frac{50}{100}+91\times \frac{90}{100}
Since \frac{4127}{10} and \frac{240}{10} have the same denominator, add them by adding their numerators.
\frac{4367}{10}+84\times \frac{50}{100}+80\times \frac{50}{100}+91\times \frac{90}{100}
Add 4127 and 240 to get 4367.
\frac{4367}{10}+84\times \frac{1}{2}+80\times \frac{50}{100}+91\times \frac{90}{100}
Reduce the fraction \frac{50}{100} to lowest terms by extracting and canceling out 50.
\frac{4367}{10}+\frac{84}{2}+80\times \frac{50}{100}+91\times \frac{90}{100}
Multiply 84 and \frac{1}{2} to get \frac{84}{2}.
\frac{4367}{10}+42+80\times \frac{50}{100}+91\times \frac{90}{100}
Divide 84 by 2 to get 42.
\frac{4367}{10}+\frac{420}{10}+80\times \frac{50}{100}+91\times \frac{90}{100}
Convert 42 to fraction \frac{420}{10}.
\frac{4367+420}{10}+80\times \frac{50}{100}+91\times \frac{90}{100}
Since \frac{4367}{10} and \frac{420}{10} have the same denominator, add them by adding their numerators.
\frac{4787}{10}+80\times \frac{50}{100}+91\times \frac{90}{100}
Add 4367 and 420 to get 4787.
\frac{4787}{10}+80\times \frac{1}{2}+91\times \frac{90}{100}
Reduce the fraction \frac{50}{100} to lowest terms by extracting and canceling out 50.
\frac{4787}{10}+\frac{80}{2}+91\times \frac{90}{100}
Multiply 80 and \frac{1}{2} to get \frac{80}{2}.
\frac{4787}{10}+40+91\times \frac{90}{100}
Divide 80 by 2 to get 40.
\frac{4787}{10}+\frac{400}{10}+91\times \frac{90}{100}
Convert 40 to fraction \frac{400}{10}.
\frac{4787+400}{10}+91\times \frac{90}{100}
Since \frac{4787}{10} and \frac{400}{10} have the same denominator, add them by adding their numerators.
\frac{5187}{10}+91\times \frac{90}{100}
Add 4787 and 400 to get 5187.
\frac{5187}{10}+91\times \frac{9}{10}
Reduce the fraction \frac{90}{100} to lowest terms by extracting and canceling out 10.
\frac{5187}{10}+\frac{91\times 9}{10}
Express 91\times \frac{9}{10} as a single fraction.
\frac{5187}{10}+\frac{819}{10}
Multiply 91 and 9 to get 819.
\frac{5187+819}{10}
Since \frac{5187}{10} and \frac{819}{10} have the same denominator, add them by adding their numerators.
\frac{6006}{10}
Add 5187 and 819 to get 6006.
\frac{3003}{5}
Reduce the fraction \frac{6006}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}