Solve for x
x = \frac{441 - \sqrt{929}}{16} \approx 25.657531168
Graph
Share
Copied to clipboard
\left(110-4x\right)^{2}=\left(\sqrt{2x+3}\right)^{2}
Square both sides of the equation.
12100-880x+16x^{2}=\left(\sqrt{2x+3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(110-4x\right)^{2}.
12100-880x+16x^{2}=2x+3
Calculate \sqrt{2x+3} to the power of 2 and get 2x+3.
12100-880x+16x^{2}-2x=3
Subtract 2x from both sides.
12100-882x+16x^{2}=3
Combine -880x and -2x to get -882x.
12100-882x+16x^{2}-3=0
Subtract 3 from both sides.
12097-882x+16x^{2}=0
Subtract 3 from 12100 to get 12097.
16x^{2}-882x+12097=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-882\right)±\sqrt{\left(-882\right)^{2}-4\times 16\times 12097}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -882 for b, and 12097 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-882\right)±\sqrt{777924-4\times 16\times 12097}}{2\times 16}
Square -882.
x=\frac{-\left(-882\right)±\sqrt{777924-64\times 12097}}{2\times 16}
Multiply -4 times 16.
x=\frac{-\left(-882\right)±\sqrt{777924-774208}}{2\times 16}
Multiply -64 times 12097.
x=\frac{-\left(-882\right)±\sqrt{3716}}{2\times 16}
Add 777924 to -774208.
x=\frac{-\left(-882\right)±2\sqrt{929}}{2\times 16}
Take the square root of 3716.
x=\frac{882±2\sqrt{929}}{2\times 16}
The opposite of -882 is 882.
x=\frac{882±2\sqrt{929}}{32}
Multiply 2 times 16.
x=\frac{2\sqrt{929}+882}{32}
Now solve the equation x=\frac{882±2\sqrt{929}}{32} when ± is plus. Add 882 to 2\sqrt{929}.
x=\frac{\sqrt{929}+441}{16}
Divide 882+2\sqrt{929} by 32.
x=\frac{882-2\sqrt{929}}{32}
Now solve the equation x=\frac{882±2\sqrt{929}}{32} when ± is minus. Subtract 2\sqrt{929} from 882.
x=\frac{441-\sqrt{929}}{16}
Divide 882-2\sqrt{929} by 32.
x=\frac{\sqrt{929}+441}{16} x=\frac{441-\sqrt{929}}{16}
The equation is now solved.
110-4\times \frac{\sqrt{929}+441}{16}=\sqrt{2\times \frac{\sqrt{929}+441}{16}+3}
Substitute \frac{\sqrt{929}+441}{16} for x in the equation 110-4x=\sqrt{2x+3}.
-\frac{1}{4}-\frac{1}{4}\times 929^{\frac{1}{2}}=\frac{1}{4}+\frac{1}{4}\times 929^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{929}+441}{16} does not satisfy the equation because the left and the right hand side have opposite signs.
110-4\times \frac{441-\sqrt{929}}{16}=\sqrt{2\times \frac{441-\sqrt{929}}{16}+3}
Substitute \frac{441-\sqrt{929}}{16} for x in the equation 110-4x=\sqrt{2x+3}.
-\frac{1}{4}+\frac{1}{4}\times 929^{\frac{1}{2}}=-\left(\frac{1}{4}-\frac{1}{4}\times 929^{\frac{1}{2}}\right)
Simplify. The value x=\frac{441-\sqrt{929}}{16} satisfies the equation.
x=\frac{441-\sqrt{929}}{16}
Equation 110-4x=\sqrt{2x+3} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}