Evaluate
\frac{110}{19}\approx 5.789473684
Factor
\frac{2 \cdot 5 \cdot 11}{19} = 5\frac{15}{19} = 5.7894736842105265
Share
Copied to clipboard
\begin{array}{l}\phantom{19)}\phantom{1}\\19\overline{)110}\\\end{array}
Use the 1^{st} digit 1 from dividend 110
\begin{array}{l}\phantom{19)}0\phantom{2}\\19\overline{)110}\\\end{array}
Since 1 is less than 19, use the next digit 1 from dividend 110 and add 0 to the quotient
\begin{array}{l}\phantom{19)}0\phantom{3}\\19\overline{)110}\\\end{array}
Use the 2^{nd} digit 1 from dividend 110
\begin{array}{l}\phantom{19)}00\phantom{4}\\19\overline{)110}\\\end{array}
Since 11 is less than 19, use the next digit 0 from dividend 110 and add 0 to the quotient
\begin{array}{l}\phantom{19)}00\phantom{5}\\19\overline{)110}\\\end{array}
Use the 3^{rd} digit 0 from dividend 110
\begin{array}{l}\phantom{19)}005\phantom{6}\\19\overline{)110}\\\phantom{19)}\underline{\phantom{9}95\phantom{}}\\\phantom{19)9}15\\\end{array}
Find closest multiple of 19 to 110. We see that 5 \times 19 = 95 is the nearest. Now subtract 95 from 110 to get reminder 15. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }15
Since 15 is less than 19, stop the division. The reminder is 15. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}