Solve for n
n=\frac{\sqrt{7089}-7}{80}\approx 0.964952493
n=\frac{-\sqrt{7089}-7}{80}\approx -1.139952493
Share
Copied to clipboard
110\times 2=n\left(35+40\times 5n\right)
Multiply both sides by 2.
220=n\left(35+40\times 5n\right)
Multiply 110 and 2 to get 220.
220=n\left(35+200n\right)
Multiply 40 and 5 to get 200.
220=35n+200n^{2}
Use the distributive property to multiply n by 35+200n.
35n+200n^{2}=220
Swap sides so that all variable terms are on the left hand side.
35n+200n^{2}-220=0
Subtract 220 from both sides.
200n^{2}+35n-220=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-35±\sqrt{35^{2}-4\times 200\left(-220\right)}}{2\times 200}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 200 for a, 35 for b, and -220 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-35±\sqrt{1225-4\times 200\left(-220\right)}}{2\times 200}
Square 35.
n=\frac{-35±\sqrt{1225-800\left(-220\right)}}{2\times 200}
Multiply -4 times 200.
n=\frac{-35±\sqrt{1225+176000}}{2\times 200}
Multiply -800 times -220.
n=\frac{-35±\sqrt{177225}}{2\times 200}
Add 1225 to 176000.
n=\frac{-35±5\sqrt{7089}}{2\times 200}
Take the square root of 177225.
n=\frac{-35±5\sqrt{7089}}{400}
Multiply 2 times 200.
n=\frac{5\sqrt{7089}-35}{400}
Now solve the equation n=\frac{-35±5\sqrt{7089}}{400} when ± is plus. Add -35 to 5\sqrt{7089}.
n=\frac{\sqrt{7089}-7}{80}
Divide -35+5\sqrt{7089} by 400.
n=\frac{-5\sqrt{7089}-35}{400}
Now solve the equation n=\frac{-35±5\sqrt{7089}}{400} when ± is minus. Subtract 5\sqrt{7089} from -35.
n=\frac{-\sqrt{7089}-7}{80}
Divide -35-5\sqrt{7089} by 400.
n=\frac{\sqrt{7089}-7}{80} n=\frac{-\sqrt{7089}-7}{80}
The equation is now solved.
110\times 2=n\left(35+40\times 5n\right)
Multiply both sides by 2.
220=n\left(35+40\times 5n\right)
Multiply 110 and 2 to get 220.
220=n\left(35+200n\right)
Multiply 40 and 5 to get 200.
220=35n+200n^{2}
Use the distributive property to multiply n by 35+200n.
35n+200n^{2}=220
Swap sides so that all variable terms are on the left hand side.
200n^{2}+35n=220
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{200n^{2}+35n}{200}=\frac{220}{200}
Divide both sides by 200.
n^{2}+\frac{35}{200}n=\frac{220}{200}
Dividing by 200 undoes the multiplication by 200.
n^{2}+\frac{7}{40}n=\frac{220}{200}
Reduce the fraction \frac{35}{200} to lowest terms by extracting and canceling out 5.
n^{2}+\frac{7}{40}n=\frac{11}{10}
Reduce the fraction \frac{220}{200} to lowest terms by extracting and canceling out 20.
n^{2}+\frac{7}{40}n+\left(\frac{7}{80}\right)^{2}=\frac{11}{10}+\left(\frac{7}{80}\right)^{2}
Divide \frac{7}{40}, the coefficient of the x term, by 2 to get \frac{7}{80}. Then add the square of \frac{7}{80} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+\frac{7}{40}n+\frac{49}{6400}=\frac{11}{10}+\frac{49}{6400}
Square \frac{7}{80} by squaring both the numerator and the denominator of the fraction.
n^{2}+\frac{7}{40}n+\frac{49}{6400}=\frac{7089}{6400}
Add \frac{11}{10} to \frac{49}{6400} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n+\frac{7}{80}\right)^{2}=\frac{7089}{6400}
Factor n^{2}+\frac{7}{40}n+\frac{49}{6400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{7}{80}\right)^{2}}=\sqrt{\frac{7089}{6400}}
Take the square root of both sides of the equation.
n+\frac{7}{80}=\frac{\sqrt{7089}}{80} n+\frac{7}{80}=-\frac{\sqrt{7089}}{80}
Simplify.
n=\frac{\sqrt{7089}-7}{80} n=\frac{-\sqrt{7089}-7}{80}
Subtract \frac{7}{80} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}