Solve for x
x=\frac{120\sqrt{141}}{47}-1\approx 29.317469158
x=-\frac{120\sqrt{141}}{47}-1\approx -31.317469158
Graph
Share
Copied to clipboard
\frac{11.75\left(x+1\right)^{2}}{11.75}=\frac{10800}{11.75}
Divide both sides of the equation by 11.75, which is the same as multiplying both sides by the reciprocal of the fraction.
\left(x+1\right)^{2}=\frac{10800}{11.75}
Dividing by 11.75 undoes the multiplication by 11.75.
\left(x+1\right)^{2}=\frac{43200}{47}
Divide 10800 by 11.75 by multiplying 10800 by the reciprocal of 11.75.
x+1=\frac{120\sqrt{141}}{47} x+1=-\frac{120\sqrt{141}}{47}
Take the square root of both sides of the equation.
x+1-1=\frac{120\sqrt{141}}{47}-1 x+1-1=-\frac{120\sqrt{141}}{47}-1
Subtract 1 from both sides of the equation.
x=\frac{120\sqrt{141}}{47}-1 x=-\frac{120\sqrt{141}}{47}-1
Subtracting 1 from itself leaves 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}