Evaluate
\frac{28}{11}\approx 2.545454545
Factor
\frac{7 \cdot 2 ^ {2}}{11} = 2\frac{6}{11} = 2.5454545454545454
Share
Copied to clipboard
11.58-\left(\frac{77+5}{11}+1.58\right)
Multiply 7 and 11 to get 77.
11.58-\left(\frac{82}{11}+1.58\right)
Add 77 and 5 to get 82.
11.58-\left(\frac{82}{11}+\frac{79}{50}\right)
Convert decimal number 1.58 to fraction \frac{158}{100}. Reduce the fraction \frac{158}{100} to lowest terms by extracting and canceling out 2.
11.58-\left(\frac{4100}{550}+\frac{869}{550}\right)
Least common multiple of 11 and 50 is 550. Convert \frac{82}{11} and \frac{79}{50} to fractions with denominator 550.
11.58-\frac{4100+869}{550}
Since \frac{4100}{550} and \frac{869}{550} have the same denominator, add them by adding their numerators.
11.58-\frac{4969}{550}
Add 4100 and 869 to get 4969.
\frac{579}{50}-\frac{4969}{550}
Convert decimal number 11.58 to fraction \frac{1158}{100}. Reduce the fraction \frac{1158}{100} to lowest terms by extracting and canceling out 2.
\frac{6369}{550}-\frac{4969}{550}
Least common multiple of 50 and 550 is 550. Convert \frac{579}{50} and \frac{4969}{550} to fractions with denominator 550.
\frac{6369-4969}{550}
Since \frac{6369}{550} and \frac{4969}{550} have the same denominator, subtract them by subtracting their numerators.
\frac{1400}{550}
Subtract 4969 from 6369 to get 1400.
\frac{28}{11}
Reduce the fraction \frac{1400}{550} to lowest terms by extracting and canceling out 50.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}