Solve for x (complex solution)
x=\frac{i\times 4\sqrt{33}}{15}+0.8\approx 0.8+1.531883372i
x=-\frac{i\times 4\sqrt{33}}{15}+0.8\approx 0.8-1.531883372i
Graph
Share
Copied to clipboard
11.2=6x-\frac{15}{4}x^{2}
Multiply \frac{1}{2} and 7.5 to get \frac{15}{4}.
6x-\frac{15}{4}x^{2}=11.2
Swap sides so that all variable terms are on the left hand side.
6x-\frac{15}{4}x^{2}-11.2=0
Subtract 11.2 from both sides.
-\frac{15}{4}x^{2}+6x-11.2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-6±\sqrt{6^{2}-4\left(-\frac{15}{4}\right)\left(-11.2\right)}}{2\left(-\frac{15}{4}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{15}{4} for a, 6 for b, and -11.2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-\frac{15}{4}\right)\left(-11.2\right)}}{2\left(-\frac{15}{4}\right)}
Square 6.
x=\frac{-6±\sqrt{36+15\left(-11.2\right)}}{2\left(-\frac{15}{4}\right)}
Multiply -4 times -\frac{15}{4}.
x=\frac{-6±\sqrt{36-168}}{2\left(-\frac{15}{4}\right)}
Multiply 15 times -11.2.
x=\frac{-6±\sqrt{-132}}{2\left(-\frac{15}{4}\right)}
Add 36 to -168.
x=\frac{-6±2\sqrt{33}i}{2\left(-\frac{15}{4}\right)}
Take the square root of -132.
x=\frac{-6±2\sqrt{33}i}{-\frac{15}{2}}
Multiply 2 times -\frac{15}{4}.
x=\frac{-6+2\sqrt{33}i}{-\frac{15}{2}}
Now solve the equation x=\frac{-6±2\sqrt{33}i}{-\frac{15}{2}} when ± is plus. Add -6 to 2i\sqrt{33}.
x=-\frac{4\sqrt{33}i}{15}+\frac{4}{5}
Divide -6+2i\sqrt{33} by -\frac{15}{2} by multiplying -6+2i\sqrt{33} by the reciprocal of -\frac{15}{2}.
x=\frac{-2\sqrt{33}i-6}{-\frac{15}{2}}
Now solve the equation x=\frac{-6±2\sqrt{33}i}{-\frac{15}{2}} when ± is minus. Subtract 2i\sqrt{33} from -6.
x=\frac{4\sqrt{33}i}{15}+\frac{4}{5}
Divide -6-2i\sqrt{33} by -\frac{15}{2} by multiplying -6-2i\sqrt{33} by the reciprocal of -\frac{15}{2}.
x=-\frac{4\sqrt{33}i}{15}+\frac{4}{5} x=\frac{4\sqrt{33}i}{15}+\frac{4}{5}
The equation is now solved.
11.2=6x-\frac{15}{4}x^{2}
Multiply \frac{1}{2} and 7.5 to get \frac{15}{4}.
6x-\frac{15}{4}x^{2}=11.2
Swap sides so that all variable terms are on the left hand side.
-\frac{15}{4}x^{2}+6x=11.2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{15}{4}x^{2}+6x}{-\frac{15}{4}}=\frac{11.2}{-\frac{15}{4}}
Divide both sides of the equation by -\frac{15}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{6}{-\frac{15}{4}}x=\frac{11.2}{-\frac{15}{4}}
Dividing by -\frac{15}{4} undoes the multiplication by -\frac{15}{4}.
x^{2}-\frac{8}{5}x=\frac{11.2}{-\frac{15}{4}}
Divide 6 by -\frac{15}{4} by multiplying 6 by the reciprocal of -\frac{15}{4}.
x^{2}-\frac{8}{5}x=-\frac{224}{75}
Divide 11.2 by -\frac{15}{4} by multiplying 11.2 by the reciprocal of -\frac{15}{4}.
x^{2}-\frac{8}{5}x+\left(-\frac{4}{5}\right)^{2}=-\frac{224}{75}+\left(-\frac{4}{5}\right)^{2}
Divide -\frac{8}{5}, the coefficient of the x term, by 2 to get -\frac{4}{5}. Then add the square of -\frac{4}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8}{5}x+\frac{16}{25}=-\frac{224}{75}+\frac{16}{25}
Square -\frac{4}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{8}{5}x+\frac{16}{25}=-\frac{176}{75}
Add -\frac{224}{75} to \frac{16}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{4}{5}\right)^{2}=-\frac{176}{75}
Factor x^{2}-\frac{8}{5}x+\frac{16}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{5}\right)^{2}}=\sqrt{-\frac{176}{75}}
Take the square root of both sides of the equation.
x-\frac{4}{5}=\frac{4\sqrt{33}i}{15} x-\frac{4}{5}=-\frac{4\sqrt{33}i}{15}
Simplify.
x=\frac{4\sqrt{33}i}{15}+\frac{4}{5} x=-\frac{4\sqrt{33}i}{15}+\frac{4}{5}
Add \frac{4}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}