Solve for t
t=\frac{\sqrt{2243739369}-37037}{65400}\approx 0.157968289
t=\frac{-\sqrt{2243739369}-37037}{65400}\approx -1.290598258
Share
Copied to clipboard
9.81t^{2}+11.1111t=2
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
9.81t^{2}+11.1111t-2=2-2
Subtract 2 from both sides of the equation.
9.81t^{2}+11.1111t-2=0
Subtracting 2 from itself leaves 0.
t=\frac{-11.1111±\sqrt{11.1111^{2}-4\times 9.81\left(-2\right)}}{2\times 9.81}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9.81 for a, 11.1111 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-11.1111±\sqrt{123.45654321-4\times 9.81\left(-2\right)}}{2\times 9.81}
Square 11.1111 by squaring both the numerator and the denominator of the fraction.
t=\frac{-11.1111±\sqrt{123.45654321-39.24\left(-2\right)}}{2\times 9.81}
Multiply -4 times 9.81.
t=\frac{-11.1111±\sqrt{123.45654321+78.48}}{2\times 9.81}
Multiply -39.24 times -2.
t=\frac{-11.1111±\sqrt{201.93654321}}{2\times 9.81}
Add 123.45654321 to 78.48 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
t=\frac{-11.1111±\frac{3\sqrt{2243739369}}{10000}}{2\times 9.81}
Take the square root of 201.93654321.
t=\frac{-11.1111±\frac{3\sqrt{2243739369}}{10000}}{19.62}
Multiply 2 times 9.81.
t=\frac{3\sqrt{2243739369}-111111}{19.62\times 10000}
Now solve the equation t=\frac{-11.1111±\frac{3\sqrt{2243739369}}{10000}}{19.62} when ± is plus. Add -11.1111 to \frac{3\sqrt{2243739369}}{10000}.
t=\frac{\sqrt{2243739369}-37037}{65400}
Divide \frac{-111111+3\sqrt{2243739369}}{10000} by 19.62 by multiplying \frac{-111111+3\sqrt{2243739369}}{10000} by the reciprocal of 19.62.
t=\frac{-3\sqrt{2243739369}-111111}{19.62\times 10000}
Now solve the equation t=\frac{-11.1111±\frac{3\sqrt{2243739369}}{10000}}{19.62} when ± is minus. Subtract \frac{3\sqrt{2243739369}}{10000} from -11.1111.
t=\frac{-\sqrt{2243739369}-37037}{65400}
Divide \frac{-111111-3\sqrt{2243739369}}{10000} by 19.62 by multiplying \frac{-111111-3\sqrt{2243739369}}{10000} by the reciprocal of 19.62.
t=\frac{\sqrt{2243739369}-37037}{65400} t=\frac{-\sqrt{2243739369}-37037}{65400}
The equation is now solved.
9.81t^{2}+11.1111t=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{9.81t^{2}+11.1111t}{9.81}=\frac{2}{9.81}
Divide both sides of the equation by 9.81, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\frac{11.1111}{9.81}t=\frac{2}{9.81}
Dividing by 9.81 undoes the multiplication by 9.81.
t^{2}+\frac{37037}{32700}t=\frac{2}{9.81}
Divide 11.1111 by 9.81 by multiplying 11.1111 by the reciprocal of 9.81.
t^{2}+\frac{37037}{32700}t=\frac{200}{981}
Divide 2 by 9.81 by multiplying 2 by the reciprocal of 9.81.
t^{2}+\frac{37037}{32700}t+\frac{37037}{65400}^{2}=\frac{200}{981}+\frac{37037}{65400}^{2}
Divide \frac{37037}{32700}, the coefficient of the x term, by 2 to get \frac{37037}{65400}. Then add the square of \frac{37037}{65400} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{37037}{32700}t+\frac{1371739369}{4277160000}=\frac{200}{981}+\frac{1371739369}{4277160000}
Square \frac{37037}{65400} by squaring both the numerator and the denominator of the fraction.
t^{2}+\frac{37037}{32700}t+\frac{1371739369}{4277160000}=\frac{747913123}{1425720000}
Add \frac{200}{981} to \frac{1371739369}{4277160000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t+\frac{37037}{65400}\right)^{2}=\frac{747913123}{1425720000}
Factor t^{2}+\frac{37037}{32700}t+\frac{1371739369}{4277160000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{37037}{65400}\right)^{2}}=\sqrt{\frac{747913123}{1425720000}}
Take the square root of both sides of the equation.
t+\frac{37037}{65400}=\frac{\sqrt{2243739369}}{65400} t+\frac{37037}{65400}=-\frac{\sqrt{2243739369}}{65400}
Simplify.
t=\frac{\sqrt{2243739369}-37037}{65400} t=\frac{-\sqrt{2243739369}-37037}{65400}
Subtract \frac{37037}{65400} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}